
World Maritime Technology Conference, 
                                                                                                           WMTC2012, May 29-June 1, 2012, Saint-Petersburg, Russia 

 
 
  

FUNDAMENTAL PROBLEMS 

OF WAVE DYNAMICS MODELING IN ARCTIC BASIN 
Vitaly V. Bulatov, Yury V.Vladimirov  

Institute for Problems in Mechanics RAS  
Pr.Vernadskogo 101-1, 119526 Moscow, Russia  

 
 

ABSTRACT   
 

 
In paper fundamental problem of internal gravity waves dynamics are considered. Analytical and numerical 
algorithms for calculating the wave fields for the real ocean parameters are presented. Obtained mathematical 
models can describe the wave dynamics of the Arctic basin, taking into account the actual physical 
characteristics of sea water, bottom topography, etc. Numerical and analytical results show that the internal 
gravity waves have a significant impact on underwater sea objects in the Arctic  basin. 

 
  

INTRODUCTION  
  

  The history of studying the internal gravity waves in 
the ocean, as is known, originated in the Arctic 
Region after F. Nansen had described a phenomenon 
called “Dead Water”.  Nansen was the first man to 
observe the internal gravity waves in the Arctic 
Ocean.  The notion of internal waves involves 
different oceanic phenomena such as “Dead Water”, 
internal tidal waves, large scale oceanic circulation, 
and powerful pulsating internal waves.  Such natural 
phenomena exist in the atmosphere as well; however, 
the theory of internal waves in the atmosphere was 
developed at a later time along with progress of the 
aircraft industry and aviation technology [1,2].  
     Studying the oceanic currents of the Arctic Ocean 
became the principal objective of the Fram expedition 
in 1893-1986 and was continued in the years to 
follow.  At that time such a voyage was an equivalent 
of a travel to the Moon.  In the process of the 
expedition the scientists made a lot of observations 
and collected many data sheets and measurements in 
the Arctic which had been essentially unexplored at 
the time . 
   During his arctic journey F. Nansen was the first 
scientist to classify the manner in which the “Dead 
Water” phenomenon occurs.  This phenomenon 
comes about from the internal gravity waves 
generated by a slow moving vessel.  The first 
theoretical work dedicated to internal gravity waves 
was the thesis work by V.W. Ekman, who provided a 
detailed definition of dead water and systematized the 
data obtained by F. Nansen .  
    The “Dead Water” effect from internal gravity 
waves has been long known to sailors.  Sailing 
vessels after being caught in the thermocline (a 

density contrast layer) suddenly brought down to a 
complete stop.  This phenomenon resulted from the 
internal gravity waves generated by the vessel.  But 
since the sailors saw no waves on the surface behind 
the ship this enormous water resistance seemed to be 
inexplicable whatsoever, and they blamed the 
bewitched drowned for holding the ship in place and 
not letting her go.  
   Up to the 1960-s of the 20 century the research was 
for the most part focused on tidal waves, however, in 
the middle of the 1950-s some theoretic 
developmental studies and laboratory investigations 
were undertaken that involved  the internal pulsating 
waves.  As early as in 1950 there appeared the first 
definition for a superficial wake of internal gravity 
waves in the ocean.  In 1965 the first scientific 
observations were made concerning the oceanic large 
amplitude internal waves and solitons.  
    The interest to investigations involving the internal 
gravity waves grew up after the WW2 when the US 
Navy lost a few of its most advanced at the time 
submarines.  After those accidents there were 
assumptions made that the disaster might have been 
caused by the internal gravity waves.  As is known, 
the submarines often move along the thermocline (a 
density contrast layer) to avoid detection since the 
thermocline surface reflects the acoustical signals of 
active sonars and sea vessels .  
    The most notorious incident involved the US Navy 
Thresher submarine that was lost at sea in 1963 with 
the crew of 129 on board.  The US Thresher 
submarine was a most advanced boat in the world in 
the 1960-s and she could descend to depths and move 
at velocities that were inconceivable just a few years 
before she was constructed.  It might be that the 
Thresher submarine was going along the thermocline 

 1



 

and a large internal wave took her down to a depth 
pressure that she could not survive. There were no 
failures reported in operation of the submarine 
instrumentation, and no severe storms were detected 
in the area where the submarine was lost.  It all might 
happen very quickly since the crew was not able to 
prevent the boat from falling down to deep water. 
  The first scientific explanation of what might be 
happening with the submarines appeared in 1965. It 
was the year that in the Andaman Sea for the first 
time ever discovered were large internal waves which 
happened to be a real sensation.  Moving along the 
thermocline the wave could go 80 meters down.  The 
oceanographers in the world until then believed no 
such waves existed.  However, the Russian and US 
space programs allowed the scientists to take a look 
at our planet from the space. The panoramic 
photographs made from the orbit showed multiple 
wakes of waves.  The point is that internal waves can 
create rather strong currents on the ocean surface.  
The flow is changed depending on the wave 
extension: its velocity is greater at the wave crest and 
wave trough, and is slower where thermocline 
oscillations are little.  If several wave packets follow 
each other this pattern on the ocean surface is 
repeated.  These surface flows are getting stronger or 
weaker when affected by wind waves depending on 
the set of wind, and can be defined as variations in 
light reflecting capacity of the ocean surface by 
remote radar sensing [1-3].  

   The Apollo-Soyuz Test Project in 1975 was the first 
joint Russian-US enterprise in the space.  The NASA 
researchers asked the crew to monitor the internal 
waves and photograph them.  John Apel, who was a 
pioneer in studying the internal waves of the World 
Ocean, in 1978, wrote in the general scientific report 
of the expedition the following : 
«At least three photographs made by the “Apollo-
Soyuz” crewmen have revealed obvious signs of 
internal gravity waves in the ocean, which is evident 
from periodically changing optical reflections from 
the ocean surface positioned above those waves.  The 
wave packet (or the wave group) observed at Cadiz in 
Spain had the characteristics similar to those of 
internal waves shown by satellite photos taken close 
to the East Coast of the USA.  In the Andaman Sea 
near the Malay Peninsula observed were several 
wave groups with the wave-lengths of 5 to 10 km and 
separations between the groups of 70 to 115 km.  If 
these are really surface wakes of internal waves, 
these waves are one of the largest and fastest to this 
day.  The measurements made earlier from aboard a 
sea vessel indicated presence in that area of large 
amplitude internal waves». 
   The destruction of submarines gives evidence of the 
force of internal gravity waves.  The internal waves 
generally move along the thermocline (a density 

contrast layer) positioned at a certain depth which 
separates by rather a weak at the ocean surface from 
deep waters, and their oscillation vector is directed 
either downwards or upwards.  Once occurred these 
waves are propagating while maintain their form and 
force, and are capable of covering long distances.  
The internal waves also function as a carrier vehicle 
by transferring biomass and nourishment from one 
place to another.  The underwater waves traveling 
upwards the shelf take the nourishment from the 
ocean deep water to the more salty shallow waters 
with ideal living conditions for larvae and fingerling.  
The wave motion in this case may be compared to a 
pumping action .  

     The amplitude of internal gravity waves is 
generally comparable to the depth of the near-surface 
ocean.  However, there was reported an occurrence 
when the wave was five times higher than the 
thermocline height.  Since the sea water always 
contains layers positioned above each other with 
different temperature and salinity characteristics the 
internal gravity waves are generally in existence 
everywhere within the ocean thickness, but reach 
their maximum amplitudes typically near the 
thermocline.  In equatorial areas the thermocline is 
located at the depth of 200 to 300 m, in the region of 
the Ormen Lange gas-field  (Norway, Arctic basin) it 
is at 550-m depth, and in the Norwegian fiords with 
flowing in fresh water the thermocline is just 4 to 10 
m deep .   

    The industrial activities on the continental shelf 
involving crude-oil and gas production and other 
mining works have become an important factor for 
beginning the research on internal gravity waves with 
large amplitudes.  The vessels and rigs for drilling 
and underwater constructions use long tubes 
connecting them to the sea bottom.  The builders of 
underwater structures in equatorial areas have 
experienced the effect of large underwater waves and 
strong surface flows that can be shaped as a steep 
waterfall.  Some time ago, when the phenomenon of 
internal wave was not known yet there were times 
when the builders got their equipment lost. Such 
losses are quite costly and make it clear that to protect 
and keep safe the fixed structures at sea we have to 
control the effect of internal gravity waves [1,2].  

    The construction of sea platforms such as, 
for example, the Ormen Lange gas-field (Norway, 
Arctic basin) and other constructions at the sea 
bottom have stipulated many scientific studies 
including the fundamental research.  Thus, for 
instance, the thermocline at the Ormen Lange gas-
field (Norway, Arctic basin) is located at the depth of 
500 m. It separates the Atlantic warm water of some 
70C from the polar cold water of about 10C.  The 
additionally accumulated warm current of the 

 2



 

Atlantic Ocean can drop the thermocline even lower.  
The measurements in the region of Ormen Lange 
have registered once the current to lower the 
thermocline down from its regular depth to 550 m 
where it stayed for three days.  It went down to the 
platform positioned at 850-m depth.  After that the 
water was flowing back and upslope.  In the 
beginning its motion velocity was half a meter per 
second which was very fast for a near-bottom current.  
Gradually the velocity dropped down, but the 
oscillations continued for a surprisingly long time of 
full 24 hours .  
    The special interest to the research involving 
internal gravity waves is attributed also to intensive 
development of the Arctic and its natural resources.  
The internal waves are still poorly studied in the 
Arctic region since they are moving below the ice and 
practically are not visible from above.  However, the 
available information on the movement of underwater 
objects indicates their presence.  Yet, there may be 
exceptions when the internal gravity waves reach the 
ice cover lifting it up or down with certain 
periodicity, which can be monitored radar sensing 
equipment.  The effect of waves of all types can 
result in breaking the Arctic ice cover.  In addition 
the waves provoke iceberg displacement and move 
various pollutants.  This is why the research of wave 
dynamics in the Arctic shelf region appears to be an 
important scientific and practical task to ensure safety 
in construction and operation of sea platforms . 

  To make a detailed description of a wide range of 
physical phenomena that belong to wave dynamics of 
stratified, horizontally non-uniform and non-
stationary mediums one should proceed from rather 
advanced mathematical models which usually 
become quite complex non-linear and multivariate, 
and can be fully and effectively explored only if 
using numerical methods.  In certain situations, 
however, an adequate initial representation of the 
explored phenomena circle can be obtained when 
using more simple asymptotic models and analytical 
methods.  For that matter there are as quite 
characteristic the problems of mathematically 
modeling the dynamics for non-harmonic packets of 
internal gravity waves, and even within the bounds of 
linear models they offer rather specific solutions that 
provide along with nontrivial physical effects for a 
self-sustained mathematical interest   

          Now in connection with  the new problems 
arising in geophysics, oceanology, physics of 
atmosphere, usage of the cryogenic liquids in the 
engineering sphere, as well as the problems of 
protection and study of the medium, operation of the 
complex hydraulic engineering facilities, including  
the marine oil producing complexes, and  a number of 
other actual problems facing the science and 
engineering we can observe the growth of interest to 

the research of the dynamics of the wave movements 
of  the different inhomogeneous liquids and, in 
particular, the stratified liquids. This interest is caused 
not only by the practical needs, but also by the need to 
have the solid theoretical base to solve the arising 
problems [1-3].  
         It is necessary to note, that solution of the 
problems of the mechanics of continua and 
hydrodynamics always served as the stimulus of new 
directions in mathematics and mathematical physics. 
As the illustration to the above may serve the stream of 
the new ideas in the theory of the nonlinear differential 
equations, and also the discovery of the startling 
dependencies between the can be appearing  the 
different  branches of mathematics, that has followed 
after exploration of Cartevega de Vriza  equation for 
the waves on the shallow water. Certainly, for the 
detailed description of the big amount of the natural 
phenomena connected with the dynamics of the 
stratified non-uniform in the horizontal direction and 
the non-stationary mediums, it is necessary to use the 
sufficiently developed mathematical models, which as 
a rule are the rather complex nonlinear multiparametric 
mathematical models and for their full-size research 
only the numerical methods are effective.  
           The interest to the internal gravity waves is 
caused by their wide presence in the nature. Both the 
air atmosphere, and the oceans (Arctic basin) are 
stratified. Reduction of the air pressure and its density 
at the increase of the elevation are well known. But the 
sea water is also stratified. Here the raise of the water 
density with the increase of its depth is determined, 
mainly, not by the rather small compressibility of the 
water, but by the fact, that with the increase of the 
depth, as a rule, the temperature of the water is 
decreasing, and its saltiness grows. In the capacity of 
the stratified medium, as a rule, one considers the 
medium, the physical characteristics (density, dynamic 
viscosity and others) of which in the medium 
stationary status are changing only along some 
concrete direction. Stratification of the natural 
mediums (the ocean, the atmosphere) can be caused by 
the different physical reasons, but the most often  by 
the gravity. This force creates in the stratified medium 
such a distribution of the particles of the dissolved in it 
salts and suspensions, at which it forms the 
heterogeneity of the medium along the direction of the 
gravity field in the stratified medium.  
         This heterogeneity is called the density 
stratification. The stratification of density, as the 
experimental and natural observation show, renders the 
most essential influence, as compared with other kinds 
of stratification, on the dynamic properties of the 
medium and on the processes of distribution in the 
medium of the wave movements. Consequently at 
consideration of the wave generations in the stratified 
mediums usually neglect all other kinds of wave 
stratification, except for the density stratification, and  
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in the capacity of  the stratified medium they consider 
the medium with density stratification caused by the 
gravity.  
     In the real oceanic conditions  (Arctic basin) the 
density changes are small, the periods of oscillations 
of the internal waves are changing from several 
minutes (in the layers with rather fast change of the 
temperatures and the depth) up to the several hours. 
Such great periods of the fluctuations means, that 
even at the big amplitude of the internal waves, but 
they can achieve dozens of meters along the vertical 
direction , the speeds of the particles in the internal 
wave are low – for the vertical components the 
speeds of the particles have the order of mm/s, and 
for the horizontal - cm/s.         Therefore the 
dissipative losses – the losses caused by of the liquid 
viscosity in the internal waves are very small, and the 
waves propagation can propagate practically without 
fading within the big distances,. At that the speed of 
propagation of the internal waves in the ocean is low 
- the order of dozens of cm/s . 
      These properties of the internal gravity waves 
mean, that they can keep the information about the 
sources of their generations for the long time. 
Unfortunately, it is very difficult to orientate in this 
information because the internal waves pass the 
dozens and hundreds of kilometers from the source 
the generations up to the place of supervision; and 
practically everywhere, where there is the 
stratification of the ocean takes place, we can observe 
the internal waves, but simultaneously we can "hear" 
the "voices" of the most different sources. At that the 
qualitative (and  the quantitative) properties of the 
internal waves, caused by that or other concrete 
source depend not only on its physical nature, and 
also on its spatial and time distribution, but also 
depends on the properties of the medium located  
between the source of the waves and the place of the 
observation . 

The internal waves represent the big interest 
not only from the point of view of their applications. 
They are of the interest to the theorists occupied with 
the problem of propagation ща the waves, as the 
internal waves properties in many respects differ 
from the properties of the accustomed to us the 
acoustic or electromagnetic waves. For example, for 
short harmonious internal waves of the following  
kind  )),,(exp( tizyxikSA ω− , where  ) – the 
rays are directed not  perpendicularly to the wave 
fronts – to the surfaces of the equal phase

1>>k

S const= , 
but along these surfaces . 

The stratification, or the layered structure of 
the natural mediums (oceans and the air atmosphere) 
causing formation of the internal gravity waves plays 
then appreciable role in different oceanic and 
atmospheric processes and influences on the 
horizontal and vertical dynamic exchanges. The 
periods of the internal waves can make from several 

minutes up to several hours, the lengths of the waves 
can to achieve up to dozens of kilometers, and their 
amplitudes can exceed dozens of meters. The 
physical mechanism of formation of the  internal 
waves is simple enough: if in the steadily stable 
stratified medium has appeared a generation, which 
has caused  the particle out its balance state, then 
under action of gravity and the buoyancy the particle 
will make fluctuations about its balance position . 
         The theory of the wave movements of the 
stratified mediums being the section of the modern 
hydrodynamics is quickly developing recently and 
rather interesting in the theoretical aspect as well as it 
is connected with the major applications in the 
engineering field  (hydraulic engineering, 
shipbuilding, navigation, energy) and in geophysics 
(oceanology, meteorology,  hydrology, preservation 
of the environment). Now the majority of the applied 
problems, concerning the waves generation caused by 
various generations are solved just in the linear 
aspect, that is considering the assumption, that the 
amplitude of the wave movements is small in 
comparison with length of the wave. The relative 
simplicity of the solution of the linear equations as 
compared with the solution of the complete nonlinear 
problem, the modern development of the 
corresponding mathematical tools and the computer 
engineering allows to meet many challenges of 
practice . 
    Initially the theory of wave movements of the 
stratified medium was developing as the theory of 
superficial waves describing the behavior of the free 
surface of the liquid being in the gravity field. Later it 
has been understood, that the superficial waves 
represent the special type of the waves existing on the 
border of the separation of the various mediums 
densities, which in turn represent the special case of 
the internal waves in the medium non-uniform 
(stratified) in density. In the real ocean (Arctic basin) 
the non-uniform distribution of density may take 
place both in the vertical, and in the horizontal 
directions. At that considering the existing 
heterogeneity of the medium both in the vertical the 
horizontal directions, and also its nonstationarity at 
research of the distribution of the internal gravity 
waves require to use the special mathematical tools. 
As a rule  it is supposed, that the density distribution 
is steady, that is the density does not decrease with 
the change  of the depth . 

The reasons of initiation of the superficial and internal 
waves in the real ocean are very different:  the 
fluctuations of the atmospheric pressure, the flow past 
of the bottom asperities, movement of the surface or 
the underwater ship, deformation in the density field, 
the turbulent spots formed by any reasons, the bottom 
shift or the underwater earthquake, the surface or 
underwater explosions, etc. One of the mechanisms of 
generation of the internal gravity waves may be 
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excitation of the wave fields caused by, for example, at 
movement (flow past) of the non-local sources 
(underwater vessels, sea platforms), the turbulent 
spots, the water lenses and the other non-wave 
formations with the abnormal characteristics.        

 
 

1.  PROBLEM FORMULATION  
 

1.1. Wave dynamics in vertically stratified 
mediums. Generally the system of the linear 
equations describing the small movements of the 
originally quiescent incompressible non-viscous 
stratified medium in the system of the Cartesian 
coordinates x = (x, y, z) with the axis z directed 
vertically upwards, looks like [1,2] 
 
 div U = Q (x, t)                                                           

),(0 txSFgradp
t

U
=++

∂
∂ρ                                 (1) 

),(0 txKW
dz

d
t

=+
ρ

∂
∂ρ  

 
where U =   ,    p, ),,( 21 WUU ρ  - perturbation of 
the velocity vector,  pressure and density; ρ 0 (z) – 
stratified medium density in the quiescent state;  
F=(0,0,gρ),  g - acceleration of the gravity.  
Functions Q, S, K represent intensities of distributions 
of the sources of weight, pulses and density 
accordingly. Boundary conditions on the free surface 

  and on the flat bottom  0=z Hz −=  look like  
  

tW ∂∂= /η  t)y,P(x,=  g-p 0ηρ      0=z  
                              (2) 

    
),,( tyxZW = Hz −=    

 
      Here function η (x, y, t) describes the vertical 
displacement of the free surface; P - external 
pressure, acting on the free surface; and  Z – the 
vertical speed of the bottom. The initial conditions at 
t=0 are as follows:              
 

)(* xUU = ,ρ=ρ*(x),  η=η*(x, y)                         (3) 
 
where functions , ρ*, η* - initial values of 
generations of the vector of speed, density and 
elevation of the free surface.  To ensure the correct 
performance of the condition it is required to meet the 
following condition: div  = Q (

)(* xU

U )(* x 0=t ). (t=0). 
       By virtue of the linearity of the problem the 
forced waves are represent  by the superposition of 
the free harmonious waves described by the 
homogeneous system (1) and the homogeneous 

boundary and initial conditions of (2), (3). The 
system (1) can be reduced to one equation for any of 
required functions, usually it is done for the vertical 
component of speed. At that the homogeneous system 
(1) and the homogeneous boundary conditions (2) 
may be presented in the form  
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∂
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The first equation from (4) is to some extend 
simplified after introduction of Boissinesq 
approximation. At usage of  this approximation in the 
equations of the pulse preservation  (1) the difference 
of the density from some constant value ρ s , is 
considered only in the member describing 
floatability, in the inertial members the real density is 
replaced with the value ρ s , and the equation (4) is 
reduced to the kind:  
 

0)()( 2
2

2

2

2
=++ WzW N

zt
ΔΔ

∂
∂

∂
∂                         (5)

 
The function is one of the basic 

characteristics of the stratified medium, and has the 
fundamental value in the theory of the internal gravity 
waves and is called the buoyancy frequency or 
Vaisala-Brunt frequency.  The value Т=2π/N defines 
Vaisala-Brunt period. For the real ocean and the 
atmosphere the value Т varies from minutes up to 
several hours, and for the stratified liquid produced in 
the laboratory, it can make some seconds . 

)(zN

       Homogeneity of the equations (4), (5) and their 
boundary conditions at the variables х, у, t allow to 
look for the elementary wave solutions in the field of 
the plane waves:  )exp()(),.( tiikrztxW ωϕ −= , 
where  k is the wave vector in the plane x, y; ω  - 
oscillations frequency; r = (x, y).  
              For function )(zϕ  from (4) the boundary 
problem  results in the following Sturm-Liouville 
equation: 
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in Boissinesq approximation 
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where k = | k |. Problems (6), (7) are the problems of 
the own values, after solution of which , there may be 
defined the system of the own values ω  (dispersive 
dependences) and own functions )(zϕ  for each fixed 
value of the wave number k. The spectrum of such 
problems is always discrete, that is the system 
possesses the countable number of the modes )(znϕ   
(n = 1,2,3...), to each of which there corresponds the 
law of the dispersion ).(κωω nn =  In the case when 
the depth of the liquid is endless and the difference of 
the function N (z) from zero takes place also within 
the unlimited interval, then alongside with the 
discrete spectrum there is also a continuous spectrum. 
          The knowledge of the dispersive dependences 
and their properties has the paramount value at 
research of the linear gravity waves. The basic 
properties of the own values and the own functions of 
the problems (6), (7) are well studied. The own 
functions of the considered problems may be divided 
into to two classes. The first class is presented by one 
own function )(0 zϕ , which is monotonically and 
quickly enough decreasing with the increasing depth. 
This own function poorly depends on the conditions 
of stratification and describes the superficial wave. 
All other own functions correspond to the normal 
modes of the internal waves. For the internal waves 
own function )(znϕ  ( n=1,2,3...) has n-1 zero inside 
of the interval [-Н, 0]. For the continuously stratified 
liquid of the final depth both for its superficial wave 
and for its internal waves is typical the monotonous 
increase in frequency ω of a single mode at the 
growth of the wave number k, the monotonous 
reduction of  the phase speeds with the 

growth of k and at the increase of the mode number, 
and also excess of the phase speeds over the group 
speeds . The maximal values of the 

phase and the group speeds coincide and take place at 
k = 0. The significant difference of the superficial 
wave from the internal waves consists that in the 
short-wave region (κ→оо) the frequency of the 
superficial wave is unrestrictedly increasing 

( ), whereas the internal waves frequency tends 

to the value .  

κω /=c f

κω dd /c g
=

κ 2/1~

)(max zN
z

)0(

         Rather small change of the  liquid density at 
changing the depth in comparison with the drop of 
the density on the water – air border allows to 
research the internal waves in the approximation of 
the "solid cover" ( 0=ϕ ),  which filters the 
superficial waves out without essential distortion of 
the internal waves. Approximation of "the solid 
cover" allows to neglect the first sum component in 
the dynamic condition of (2). 
        The analytical decision of the problems (6), (7) 
is possible only for some special cases of changing of 
N(z) function.  At the smooth changing of the 
function N(z) the WKBJ approximation method is 
frequently applied for the approximate calculation of 
the own values and the own functions. However this 
approach is limited by the case, when the function 
N(z) has no more than one maximum [1-4]. 
          More accurate results may be received by 
direct use of the numerical methods, and at the 
present tome there are several methods of the 
numerical solution of the problems (6), (7): the finite-
difference approximation method, at which the 
differential equations (6), (7) and the boundary 
conditions are replaced with the system of the 
difference equations, approximation of the initial 
continuous distribution of density of the piecewise-
constant function. In this case there is a possibility of 
existence of only the final number of the wave 
modes. The analysis of the asymptotic behavior of the 
phases velocities  in the shortwave field has 
demonstrated, that in the stratified medium with the 
step-by-step stratification , while for the 
medium with the continuous profile of density 

. Piecewise constant approximation of the 
Vaisala-Brunt  frequency. The numerical solution of 
the differential equations, derived  from (6), (7) after 
introduction of the Prewfer modified transformations 

fc

)(sin) zbaz

2/1−≈ kc f

1−≈ kc f

)(z
 

exp(=ϕ                                          (8) 

)(cos)exp( zbaz
)(

dz
zd

=
ϕ

 

 
      As a result of the transformations (8) for 
definition of the dispersive dependences it is enough 
to solve the nonlinear boundary value problem of the 
first order for the function , behavior of which 
unlike 

)z(b
)(zϕ  is monotonous [2, 5,6].  

        The up to now cumulative experience of 
calculation of dispersive dependences demonstrates, 
that their most complex  behavior arises at the 
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presence in the stratified medium of several wave 
guides and  on the charts of the dispersive curves 
there may arise the nodes and crowdings, which 
testify, that the behavior of the group speeds of the 
internal waves becomes non-monotonic and on some 
(abnormal) frequencies the different modes extend 
practically with the  identical phase speeds, having 
the different group speeds. Such areas are called the 
resonant zones and in them conditions for an 
overflow of the energy from the lowest energy-
carrying modes into the highest energy-carrying 
modes are created. This phenomenon looks like as 
insignificant in application to the linearized problem, 
but may be important at considering the nonlinear 
members. The abnormal frequencies represent the 
rather important feature of the internal waves, on 
them there is a qualitative change of the vertical 
structure of the wave field . 
         The thin structure of distribution of the Vaisala-
Brunt  frequency also may bring to the similar effects 
of the crowding of the dispersive characteristics on 
depth. The dispersive curves under action of the thin 
hydrological structure can be stratified into the 
separate groups (clusters) inside which occurs the 
rapprochement of the dispersive parameters of the 
different mode, whereas the groups themselves are 
moving away from each other. Such stratification, 
apparently, may affect on the spectra of the internal 
waves in the field of the frequencies close to the 
maximum Vaisala-Brunt  frequency.  
          For the solution of the equations (1) with 
conditions of (2), (3) rather convenient method of 
solution is application of Green functions describing 
development of generations caused by an instant dot 
source, being on the depth of . In case of the 
system homogeneous in the horizontal direction it is 
useful to use Fourier expansion 

1z
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Then ),,,( 1 ωzzG k  should satisfy the equation of the 
following kind: 
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The solution of this equation one should look for in 
the form of the eigenfunctions expansion of the 
problem (6) 
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where  is the solution of the equation (10) 
at 

),,( 10 zzG k
∞→ω  and describes an instant part of the 

medium response to the external excitation, and the 
sum of the eigenfunctions describes the contribution 
of the wave part. Usually the value  is rejected 
without any discussions. However in some cases, for 
example, at calculation of the amplitudes of the 
waves from the periodic sources, this component may 
be essential, because for the internal waves the law of 
decrease of the amplitudes of the wave and the non- 
wave parts of the excitation as the distance from the 
source of excitation increases is identical [1-3].  

0G

At fulfillment of the inverse Fourier 
transformation there is an ambiguity connected with 
the necessity to set the rule for the flow past the 
singularities on the real axis . The choice of the 
unambiguous solution is achieved at imposing the 
causality requirement being reduced to the condition 

ω

0)( 0 ≡<ttG  (Green's retarded function). Green's 
retarded function corresponds to the solution 
satisfying the principle of Mandelshtam radiation, 
when the energy expands from the source. By virtue 
of the specific law of dispersion of the internal waves 
the Mandelshtam radiation condition sometimes does 
not coincide with the Zommerfeld radiation condition 
(the waves leaving the source), but the use of the 
Zommerfeld radiation principle at the choice of the 
unambiguous solution can lead to the incorrect results 
[1,2,4].   
           One more method of the choice of the 
unambiguous solution is the method attributed to 
Relay providing for introduction of the infinitesimal 
dissipation equivalent to the Mandelshtam condition. 
Often the additional condition is set in the form of the 
requirement of absence of the wave excitations in the 
distant area upwards the stream (Long condition) 
however the universality of this condition is not 
obvious at considering the effect of blocking 
observable in the stratified liquids. It is also possible 
to use the approach, at which the stationary solution 
is considered as a limit at  ∞→t  of the non-
stationary solution for the acting in the stream source 
of excitation with the constant characteristics, and 
which is put into operation  .  0=t
   Let us underline, that the causality condition for 
Green's function is equivalent to the requirement of 
analyticity of its transient Fourier transformation in 
the upper half-plane of the complex frequenciesω  . It 
means, that the features on the real axis should be 
flow past from above, or in accordance with Feynman 
rule, to exercise the substitution 
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)0( +→+→ εεωω i

ω

constN =

22 N<ω

, having shifted the features 
from the real axis downwards. The analyticity of the 
transient Fourier transformation in the upper half-
plane  enables to write the Cramers-Cronig ratios 
expressing relationship between the real and the 
imaginary parts of  Green function, and also in the 
case of  by simple way to construct Green 
function by means of the analytical continuation from 
the “non-wave" field of   into the "wave" 
field of   ( the fields, where the equation of 
the internal waves belongs accordingly to the elliptic 
or the hyperbolic type) .   

22 N>ω

 
 

1.2 Wave dynamics in horizontally inhomogeneous 
mediums. As is well known, an essential influence of 
the propaganda of internal gravity waves in stratified 
natural mediums (Arctic basin) is caused by the 
horizontal inhomogeneity and non-stationarity of 
these media. To the most typical horizontal 
inhomogeneitities of a real ocean one can refer the 
modification of the relief of the bottom, and 
inhomogeneity of the density field, and the variability 
of the mean flows. One can obtain an exact analytic 
solution of this problem (for instance, by using the 
method of separation of variables) only id the 
distribution of density and the shape of the bottom are 
described by rather simple model functions. If the 
shape of the bottom and the stratification are 
arbitrary, then one can construct only asymptotic 
representation of the solution in the near and far 
zones; however, to describe the field of internal 
waves between these zones, one needs an accurate 
numerical solution of the problem [1-3].     
Using asymptotic methods, one can consider a wide 
class of interesting physical problems, including 
problems concerning the propagation of non-
harmonic wave packets of internal gravity waves in 
diverse non-homogeneous stratified media under the 
assumption that the modification of the parameters of 
a vertically stratified medium are slow in the 
horizontal direction. From the general  point of view, 
problems of this kind can be studied in the framework 
of a combination of the adiabatic and semi-classical 
approximations or by using close approach, for 
example, ray expansions. In particular, the asymptotic 
solutions of diverse dynamical problems can be 
described by using the Maslov canonical operator, 
which determines the asymptotic behavior of the 
solution, including the case of neighborhoods of 
singular sets composed of focal points, caustics, etc. 
The specific form  of the wave packet can be finally 
expressed by using some special functions, slay, in 
terms of oscillating  exponentials, Airy function, 
Fresnel integral, Pearcey-type integral, etc. The above 
approaches are quite general and, in principle, enable 
one to solve a broad spectrum of  problems from the 

mathematical point of view; however, the problem of 
their practical applications and, in particular, of the 
visualization of the corresponding asymptotic 
formulas  based on the Maslov  canonical operator is 
still far from completion, and in some specific 
problems  to find the asymptotic behavior whose 
computer realization using software of Mathematica 
type is rather simple. In this paper, using the 
approaches developed in [1,2,6,7], we construct and 
numerically realize asymptotic solutions of the 
problem, which is formulated as follows. 

 If we examine the internal gravity waves dynamics  
for the case when the undisturbed density field 

),,(0 yxzρ  depends not only on the depth , but on 
the horizontal coordinates 

z
x  and y , then, in general 

terms, if the undisturbed density is a function of 
horizontal coordinates, such a distribution of density 
induces a field of horizontal flows.  These flows, 
however, are extremely slow and in the first 
approximation can be neglected.  So it is commonly 
supposed that the field ),0 yx,(zρ  is defined a priori, 
thus, it is assumed that there exist certain external 
sources or the examined system is nonconservative.  
It is also evident that if the internal gravity waves are 
propagating above an irregular bottom there is no 
such a problem, because the "internal wave–irregular 
bottom" system is conservative and there is no 
external energy flush .  
 Then we investigated the following 
liberalized system of equations of hydrodynamics 
[1,2] 
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 Here )~,~,~( 21 WUU  is the velocity vector of 
internal gravity waves, p  and ρ  are the pressure 
and density perturbations, 

g
 is the acceleration of 

gravity ( -axis is directed downwards).  z
 Using the Boussinesq approximation which 
means the density ),,(0 yxzρ in the first three 
equations of the system (11) is assumed a constant 
value, the system (11) by applying the cross-
differentiating will be given as  
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 As the boundary conditions we take the "rigid-lid" 
condition:    at . Consider the 
harmonic waves 

0=W Hz ,0=
) ),,)(exp(~,~,~( 211 WUUtiU ω2 WU = .  

Introduce the non-dimensional variable according to 

the formulas: ,,,
h
zz

L
yy

L
xx∗ === ∗∗ where  

is the typical scale of the horizontal variations 

L

0ρ ;  
 is the typical scale of the vertical variations h 0ρ  

(for example, the thermocline width) .  
In non-dimension coordinates the equation 

system (12) will be written as (index ∗  is omitted 
hereafter)  
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L
hε , 

h
gg =1 .  

 The asymptotic solution (14) shall be found 
in the form usual for the geometric optics method   
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Functions  and ),,( tyxS ,...1,0, =mmV  are 

subject to definition.  From here on we shall restrict 
ourselves to finding only the dominant member of the 

expansion (15) for the vertical velocity component 
, at that from the last two equations (13) 

we have  
),,(0 yxzW
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    Substitute (14) into the first equation of the system 
(13) and set equal the members of the order O(1) 
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z

g
yxzN

∂
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= 0

0

12 ),,(
ρ

ρ
 is the Vaisala-Brunt 

frequency depending of the horizontal coordinates.  
 The boundary problem (16) has a calculation 
setup of eigenfunctions  and eigenvalues nW0

nn SyxK ∇≡),( , which are assumed to be known.  
From here on the index n  will be omitted while 
assuming that further calculations belong to an 
individually taken mode.  
 For the function  we have the 
eikonal equation   
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Initial conditions for the eikonal S  for the horizontal 
case are defined on the line )(),(: 00 αα yxL : 

)(),( 0 αSyxS L = . For solving the eikonal equation 
we construct the rays, that is, the equation (18)  with 
characteristics (rays) 
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where σdySqxSp ,/,/ ∂∂=∂∂=  is the length 

element of the ray. The initial conditions  and  
shall be defined from the system  

0p 0q
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 The equations (3.1.9) and initial conditions 

)(),(),(),( 0000 αααα qpyx
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 define the ray 

ασασ yyxx ==

∫+=
σ

σα
0

0 ,(()( xKSS

.  After the rays are 
found the eikonal S  is defined by integration along 

the ray :    σασα )),(), dy

 The function  is defined to the accuracy 

of multiplication by the arbitrary function .  

We shall find  given 

as: , where 

 is the solution of the vertical spectral 
problem problem (17) normalized as follows 
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Finally, we can obtain a following equation 
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 This equation  will be solved in 
characteristics of the eikonal equation (18).  Using 
the formula for  along the rays 

:

SΔ
)(1 JK

d
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J
S

σ
=Δ , where  is the geometric 

ray spread, we reduce the transfer equation (19) to the 
following conservation law along the rays 
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 Note that the wave energy flash is 
proportional to , thus, from this equation  
it follows that, in this case, there survives the value 
equal to the wave energy flash divided by the wave 
vector modulus.  

daKA 12
0

−

 To proceed to studying the problem of non-
harmonic wave packets evolution in a smoothly non-
uniform horizontally and non-stationary stratified 
medium we presuppose the choice of Anzatz 
(“Anzatz” is the German for a solution type), which 
define the propagation of Airy and Fresnel internal 
waves with certain heuristic arguments . The Airy 
waves describe the features of far wave internal 

gravity fields in shelf zone, the Fresnel waves 
describe the features of far wave internal gravity 
fields in deep ocean.  
    Airy wave.  Let’s introduce the slow variables 

 (no slowness is 
supposed over z , the index is omitted hereafter), 
where 

ttyyxx εεε === ∗∗∗ ,,

1/ <<= Lλε  is the small parameter that 
characterizes the softness of ambient horizontal 
changes (λ  is the typical iternal gravity wave length, 

 is the scale of a horizontal non-uniformity). Next 
we examine the superimposition of harmonic waves 
(in slow variables 

L
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With respect to functions ),,( yxSm ω  it is assumed 

that they are odd-numbered on ω  and ω
ω

∂∂ /min S  

is reached at 0=ω  (for all x  and y ). Substituting 
this representation  into (20) we can easily have it 
proved that the function ), y,,( xzWm ω  has at 

0=ω  a pole of the m-th order .  Therefore, as the 
model integral )(σmR  for individual terms will 
serve the following formulas  
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where the integration contour is going around the 
point 0=ω  from overhead, which enables the 
functions )(σmR  to exponentially decay at 1>>σ  

.  The functions )(σmR  have the following feature:  

)(
)(

1 σσ
σ

−= m
m R

d
d R , at that )()(0 σσ iAR ′= , 

)()(1 σσ AiR = , , etc.  It is 

evident, considering certain properties of Airy 
integrals , that the functions 

du)
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σmR  related with 
each other as 
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Fresnel wave.  As the model integrals 

)(σmR  that describe the propagation of Fresnel 
waves taking into account the solution structure for 
the displacement in the horizontally uniform case we 
use the following formulas 
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Based on the above, аnd as well on the first 

member structure of the Airy and Fresnel uniform 
wave asymptotics for a horizontally uniform medium, 
the solution of the system in (20) can be found, for 
instance, in the form (for an individually taken mode 

, , further omitting the index n )  nW nU
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where the argument  is 
assumed to be of the order of unity. This expansion 
agrees with a common approach of the geometric 
optics method and space-time ray-path method .  

( ) aaatyxS −= εσ /),,(

Note also that from such a solution structure 
it follows that the solution for a horizontally non-
uniform and non-stationary medium shall depend on 
both the "fast" (vertical coordinate) and "slow" (time 
and horizontal coordinates) variables.  Next we 
generally are going to find a solution in "slow" 
variables, at that the solution's structural elements 
which depend on the "fast" variables appear in the 
form of integrals of some slowly varying functions 
along the space-time rays.  
 This solution choice allows us to define the 
uniform asymptotics for internal gravity wave fields 
propagating within stratified mediums with slowly 
varying parameters, which holds true either near or 
far away from the wave fronts of a single wave mode.  
If we need only to define the behavior of a field near 
the wave front, then we can use one of the geometric 
optics methods – the "progressing wave" method, and 
a weakly dispersive approximation in the form of 
appropriate local asymptotics, and find the 
representation for the phase functions argument σ  in 
the form: , 
where the function  defines the wave front 

position and is determined from the eikonal equation 
solution: , where  is 
the maximum group velocity of a respective wave 
mode, i.e., the first member of the dispersion curve 
expansion in zero.  The function 

ε a−εασ tyxtSyxt −= )),,()(,,(
),,( yxtS

),,(22 tyxcS −=∇ ),,( yxtc

),,( yxtα  (the 
second member of the expanded dispersion curve) 
describes the space-time impulse width evolution of 
Airy or Fresnel non-harmonic internal gravity waves, 
and then it will be defined from some arbitrary laws 
of conservation along the eikonal equation 
characteristics with their actual form to be determined 
by the problem physical conditions.  
 
 
2.  NUMERICAL SIMULATION  
 
2.1. Wave dynamics in vertically stratified 
mediums. Under consideration is the problem of 
mathematical modeling for the field of steady-state 
internal gravity waves generated by a non-local 
disturbing source (for example underwater sea 
platform) within a flow of stratified medium of the 
thickness H  with an arbitrary distribution of the 
Vaisala-Brunt frequency .  The free surface at )(zN

0=z  is substituted with the "rigid-lid" which allows 
us to filter off the surface waves, and has little effect 
upon the internal gravity waves.  It is assumed that a 
flow velocity V  exceeds the maximum group 
velocity of internal waves in real ocean (Arctic 
basin).  The disturbing non-local source vertical 
dimension  is considered small as compared to the 
medium layer thickness.  These assumptions mean 
that the internal Froude number  is much greater than 
unity, so the pictures of the trajectories near a flowing 
source must qualitatively appear the same as in the 
case of the uniform (non-stratified)  medium . 

Parameters of the calculations are typical for Arctic 
basin and underwater sea construction: 

, sea depth , stratified flow 
velocity 

s 101. − H ≈

smV /2
zN 0)( ≈ m100

≈ , Vtx +=ξ , horizontal scale of 
underwater streamlined obstacle is about 50 m. The 
numerical simulation of the problem stated requires 
quite a number of integrations from the fast 
oscillating functions, thus; first, we have to use 
methods which allow us to effectively realize the 
integrations of this type.  Second, the complete wave 
field near a non-local flowing source of perturbations 
represents a poorly convergent series, and to obtain 
an adequate accuracy we have to integrate a large 
number of modes, however, the use of the static 
feature discrimination method enables the calculation 
of the field near a flowing source while avoiding such 
integrations.  Finally, third, at long distances from the 
source when the complete field falls into singular 
modes, the asymptotic representations for a single 
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mode of the Green’s function, make it possible to 
calculate the far fields of internal gravity waves 
without performing exact numerical calculations.  

  The numerical calculation show, for example, that 
vertical velocity W is quickly decreasing with 
decreasing depth and at Zz =  ( Zz = - depth of the 
thermocline maximum) it takes about 15% of the 
velocity value at the bottom.  Fig.1 demonstrate the 
calculation results in the thermocline maximum 
(integrated were 25 wave modes, the higher modes 
had not contributed much to the complete field), the 
maximum value of the displacement at this horizon 
reached 1.3 meters. The presented results show that 
there are at least three different regions of the 
generated field of internal waves.  First, it is the 
region immediately under the non-local source, which 
has a width of about the medium thickness, it’s the 
near-field region.  The numerical calculations have 
proven that the wave field of internal gravity waves 
within the near-field region is little dependent on a 
specific stratification and the velocity amplitude and 
displacement within this region are maximal.  
Secondly, at long distances from the non-local source 

 the far-field region) the field of internal 
gravity waves falls apart into singular wave modes, at 
that each of the modes is contained inside its Mach 
cone, and outside the cline the amplitude is low.    In 
addition to that there is a transition region in which 
the structure of the wave fields is rather complex. 

,10,( Hxy >

 

 
 

Fig. 1:  Internal gravity waves (vertical displacement) 
from a underwater nol-local source in stratified 
medium  of uniform depth( HyyHVtx /,/)( =+=ξ  
- non-dimensional horizontal coordinates)  
 
 
2.2 Wave dynamics in horizontally inhomogeneous 
mediums. In Fig. 2 we represent vertical component 
of internal gravity wave field velocity w  generated 
by a non-local source (underwater obstacle – sea 

platform) in arbitrary stratified ocean of non-uniform 
depth.  Parameters of the calculations are typical for 
Arctic basin: , the slope of the 

bottom no more than 10  . Numerical calculations 
show a significant deformation of the wave field 
structure, taking into account the horizontal 
inhomogeneities stratified mediums. For example, it 
follows from the numerical results thus presented 
that, outside the caustic, the wave field is sufficiently 
small indeed and is not subjected to great many 
oscillations, whereas the wave picture inside the zone 
of caustic is a rather complicated system of incident 
and reflected harmonics. It is well known, that caustic 
is an envelope of a family of rays, and asymptotic 
solution is obtained along these rays. Asymptotic 
representation of the field describe qualitative change 
of the wave field, and that is description of the field, 
when we cross the area of “light”, where wave field 
exists, and come in the area of “shadow”, where we 
consider wave field to be rather small. Each point of 
the caustic corresponds to a specified ray, and that ray 
is tangent at this point. In this paper the most difficult 
question is considered that can appear when we 
investigate the problems of wave theory with the help 
of geometrical optics methods and its modifications. 
And the main question consists in finding of 
asymptotic solution near special curve (or surface), 
which is called caustic.  

szN 1001.0)( −≈
0

It is a general rule that caustic of a family of 
rays single out an area in space, so that rays of that 
family cannot appear in the marked area. There is 
also another area, and each point of that area has two 
rays that pass through this point. One of those rays 
has already passed this point, and another is going to 
pass the point. Formal approximation of geometrical 
optics or WKBJ approximation cannot be applied 
near the caustic, that is because rays merge together 
in that area, after they were reflected by caustic. If we 
want to find wave field near the caustic, then it is 
necessary to use special approximation of the 
solution, and in the paper a modified ray method is 
proposed in order to build uniform asymptotic 
expansion of integral forms of the internal gravity 
wave field. After the rays are reflected by the caustic, 
there appears a phase shift. It is clear that the phase 
shift can only happen in the area where methods of 
geometrical optics, which were used in previous 
sections, can’t be applied. If the rays touch the caustic 
several times, then additional phase shifts will be 
added. Phase shift, which was created by the caustic, 
is rather small in comparison with the change in 
phase along the ray, but this shift can considerably 
affect interference pattern of the wave field.  

The asymptotic representations constructed in 
this paper allow one to describe the far field of the 
internal gravity waves generated by a non-local 
sources in stratified flow. The obtained asymptotic 
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expressions for the solution are uniform and 
reproduce fairly well the essential features of wave 
fields near caustic surfaces and wave fronts. In this 
paper the problem of reconstructing non-harmonic 
wave packets of internal gravity waves generated by a 
source moving in a horizontally stratified medium is 
considered. The solution is proposed in terms of 
modes, propagating independently in the adiabatic 
approximation, and described as a non-integer power 
series of a small parameter characterizing the 
stratified medium. In this study we analyze the 
evolution of non-harmonic wave packets of internal 
gravity waves generated by a moving source under 
the assumption that the parameters of a vertically 
stratified medium (e.g. an ocean) vary slowly in the 
horizontal direction, as compared to the characteristic 
length of the density. A specific form of the wave 
packets, which can be parameterized in terms of 
model functions, e.g. Airy functions, depends on 
local behavior of the dispersion curves of individual 
modes in the vicinity of the corresponding critical 
points. 
      In this paper a modified space-time ray method is 
proposed, which belongs to the class of geometrical 
optics methods. The key point of the proposed 
technique is the possibility to derive the asymptotic 
representation of the solution in terms of a non-
integer power series of the small parameter 

, where λ  is the characteristic wave 
length, and L is the characteristic scale of the 
horizontal heterogeneity. The explicit form of the 
asymptotic solution was determined based on the 
principles of locality and asymptotic behavior of the 
solution in the case of a stationary and horizontally 
homogeneous medium. The wave packet amplitudes 
are determined from the energy conservation laws 
along the characteristic curves. A typical assumption 
made in studies on the internal wave evolution in 
stratified media is that the wave packets are locally 
harmonic. A modification of the geometrical optics 
method, based on an expansion of the solution in 
model functions, allows one to describe the wave 
field structure both far from and at the vicinity of the 
wave front.  

L/λ=ε

        Using the asymptotic representation of the wave 
field at a large distance from a non-local source in a 
layer of constant depth, we solve the problem of 
constructing the uniform asymptotics of the internal 
waves in a medium of varying depth. The solution is 
obtained by modifying the previously proposed 
"vertical modes-horizontal rays" method, which 
avoids the assumption that the medium parameters 
vary slowly in the vertical direction. The solution is 
parameterized, for example, through the Airy waves. 
This allows one to describe not only the evolution of 
the non-harmonic wave packets propagating over a 
slow-varying fluid bottom, but also specify the wave 

field structure associated with an individual mode 
both far from and close to the wave front of the mode. 
The Airy function argument is determined by solving 
the corresponding eikonal equations and finding 
vertical spectra of the internal gravity waves. The 
wave field amplitude is determined using the energy 
conservation law, or another adiabatic invariant, 
characterizing wave propagation along the 
characteristic curves. 

 

 
 
Fig. 2:  Internal gravity waves (vertical velocity 
component) from a underwater nol-local source in 
stratified medium  of variable depth 
( HyyHVtx /,/)( =+=ξ  - non-dimensional 
horizontal coordinates)  
      
     Modeling typical shapes and stratification of the 
ocean shelf in Arctic basin we obtain analytic 
expressions describing the characteristic curves and 
examine characteristic properties of the wave field 
phase structure. As a result it is possible to observe 
some peculiarities in the wave field structure, 
depending on the shape of ocean bottom, water 
stratification and the trajectory of a moving source. In 
particular, we analyze a spatial blocking effect of the 
low-frequency components of the wave field, 
generated by a source moving alongshore with a 
supercritical velocity. Numerical analyses that are 
performed using typical ocean parameters reveal that 
actual dynamics of the internal gravity waves are 
strongly influenced by horizontal  non-homogeneity 
of the ocean bottom. In this paper we use an 
analytical approach, which avoids the numerical 
calculation widely used in analysis of internal gravity 
wave dynamics in stratified ocean (Arctic basin). 
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CONCLUSIONS  
 

The main fundamental problems of wave dynamics 
considered in the present paper were the following: 
   - construction of the exact and asymptotic solutions 
of the problem concerning the  internal gravity waves 
excited by the non-local disturbing sources in the 
non-uniform stratified mediums, as well as 
development of the numerical algorithms for analysis 
of the corresponding spectral problems and for 
calculation of the wave disturbances for the real 
parameters of the vertically stratified mediums; 
    -  research by means of the modified version of the 
space-time ray-tracing method (WKBJ method), 
evolution of the non-harmonic wave-trains of the 
internal gravity waves in the supposition of the 
slowness of variation of the parameters of the 
vertically stratified medium in the horizontal 
direction and in a time;   
    - the asymptotic analysis of the critical modes of 
generation and propagation of the internal gravity 
waves in the stratified mediums, including the study 
of the effects of the space-frequency screening; 
    - development of non-spectral methods of analysis 
of the in-situ measurements of the internal gravity 
waves for the purpose of the possible distant 
definition of the characteristics of the broad-band 
wave-trains, composing the measured hydrophysical 
fields, as well as the parameters of the ocean along a 
line of propagation of these wave-trains. 

      The paper presented  methods and 
approaches of research of the internal gravity waves 
dynamics combine the comparative simplicity and 
computational capability to gain the analytical results, 
the possibility of their qualitative analysis and the 
accuracy of the numerical results. Besides that there 
is a possibility of inspection of the trustworthiness of 
the used hypotheses and approximations on the basis 
of analysis of the real oceanological data, while the 
exact analytical solutions for the model problems do 
not allow to apply the gained outcomes, for example, 
for analysis of the problem with  the real parameters 
of the medium, and the exact numeric calculation for 
one particular real medium does not give the 
possibility of the qualitative analysis of the medium 
with other real parameters.  

The results presented by the paper on the 
research of the dynamics of the non-harmonic wave-
trains of the internal waves in the stratified mediums 
with the varying parameters enable analytically and 
numerically to examine effects of the special 
blocking, and also the excitation and failure of the 
separate frequency components of the propagating 
wave-trains.  
  It is necessary to mark once again, that in 
comparison with the majority of the researches 
devoted to study of the dynamics of the internal 
gravity waves, the methods of decomposing of the 

fields of the internal gravity waves into the certain 
benchmark functions enable to describe the main 
peculiarities of formation of the critical modes of 
generation and propagation of the non-harmonic 
wave-trains. It is expedient also to emphasize, that the 
built asymptotic representations in the form of the 
applicable model functions can be used also for study 
of any other wave processes (acoustical and seismic 
waves, SHF-irradiation, the tsunami waves, etc.) in  
the real mediums with a complex structure. All 
fundamental results of the paper are gained for the 
arbitrary distributions of the density and other 
parameters of the non-uniform media, and besides the 
main physical mechanisms of formation of the 
studied phenomena of the dynamics of the internal 
gravity waves in the non-uniform stratified mediums 
were considered in the context of the available data of 
the in-situ measurements. 

The next step in the asymptotic study of the 
internal gravity waves should be study of the linear 
interaction of the wave-trains at their propagation as 
we used approximation of adiabatic, that is the 
independence of wave modes from each other. 
However, generally, the linear interaction ( the linear 
conversion) of the waver modes is present. The 
phenomenon of the  linear conversion of the internal 
gravity waves consists, that at the wave-trains  
passing through the non-uniform sections of the 
medium the amplitudes of the waves can vary non-
adiabatically, that is the real amplitude-phase 
characteristics of the fields are varying differently, 
than it follows from the fundamental approximations 
of the geometrical optics used in this paper. The 
detailed study of these problems will be the subject of 
further researches.  

The universal nature of the he asymptotic 
methods of research of the internal gravity waves 
offered in this paper is added with the universal 
heuristic requirements of the applicability of these 
methods. These criteria ensure the internal control of 
applicability of the used methods, and in some cases 
on the basis of the formulated criteria it is possible to 
evaluate the wave fields in the place, where the given 
methods are inapplicable. Thus there are the wide 
opportunities of analysis of the wave patterns as a 
whole, that is relevant both for the correct 
formulation of the analytical investigations, and for 
realization of estimate calculations at the in-situ 
measurements of the wave fields. 
   The special role of the given methods is caused by 
that condition, that the parameters of the natural 
stratified mediums, as a rule, are known 
approximately, and efforts of the exact numerical 
solution of initial equations with usage of such 
parameters can lead to the overstatement of accuracy.  
         Also popularity of the used approaches of 
analysis of dynamics of the internal gravity waves 
can be promoted just by the existence of the lot of the 
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interesting physical problems quite adequately 
described by these approaches and can promote the 
interest to the multiplicity of problems bound to a 
diversification of the non-uniform stratified mediums. 
The value of such methods of analysis of the wave 
fields is determined not only by their obviousness, 
scalability and effectiveness at the solution of  the 
different problems, but also that they can be some 
semi-empirical basis  for other approximate  methods 
in theory of propagation of the internal gravity waves.     
    The results of this paper represent significant 
interest for physics and mathematics. Besides, 
asymptotic solutions, which are obtained in this 
paper, can be of significant importance for 
engineering applications, since the method of 
geometrical optics, which we modified in order to 
calculate the wave field near caustic, makes it 
possible to describe different wave fields in a rather 
wide class of other problems 

 
 

APPLICATIONS  
 

   Industrial activities on the continental and Arctic 
shelf connected with oil, gas, and other  minerals 
extraction became one of the important reasons to 
begin researches of dynamic internal gravity waves. 
Ships and platforms busy with drilling and 
construction at the depth use long tubes joining them 
with the sea bottom. Builders of underwater 
constructions in equatorial districts experienced the 
influence of huge underwater internal waves and 
strong surface flows which can have the form of steep 
waterfalls. Some time ago when the phenomenon of 
internal waves and their strength were not known it 
happened that the builders lost their equipment. Such 
expensive losses made them think that security of 
underwater equipment and the influence of internal 
gravity waves should be controlled. 
     Construction of sea platforms, such as Ormen 
Lange (Norway), and others on the Arctic shelf 
stimulated numerous scientific researches, including 
fundamental. Thermocline at the Ormen Lange 
deposit lies at the depth of about 500 m. It separates 
warm Atlantic water (about 7 Centigrade) from cold 
polar water (about 1 Centigrade). Additional 
accumulation of warm Atlantic stream can put the 
thermocline lower. Measurements near Ormen Lange 
(Norway) fixed once that the stream moved the 
thermocline from the usual depth to the depth of 550 
m, and it stayed there for 3 days. The thermocline 
reached the platform at the depth of 850 m. Later 
water moved backward and upward along the slope. 
First its velocity was half a meter per second which is 
too small for the bottom stream. Step by step it 
slowered but oscillations went on for a long time – 
for the whole day. 

     The amplitude of internal gravity waves is usually 
comparable with the depth of  the ocean surface layer, 
but it was fixed when the wave was 5 times higher 
than the thermocline. As the sea water consists of 
layers, one above another, and having different 
temperature and salinity, internal gravity waves exist 
at all depths in the ocean and reach their maximal 
amplitudes as a rule near the thermocline. In 
equatorial districts thermocline is situated at the depth 
of 200-300 m, in the districts of oil, gas Arctic 
deposits – about 500 m, and in Norwegian fjords with 
coming fresh water – at the depth only 4-10 m. 
     The internal waves characteristics are used for 
appreciation of their influence on the environment 
and underwater platforms of oil and gas deposits at 
the Arctic shelf. Stationary tubes for oil and gas 
transportation stretch along the ocean shelf slope. 
These tubs are about 500 m long and they can suffer 
from internal gravity waves. That is why calculations 
of wave dynamics are used for appreciation of the sea 
platform equipment wear. 

 
 
Fig. 3:  Gas (oil) production in the Arctic Basin. Gas 
(oil) deposits are located at a depth of several 
hundred meters and distances of ten or more 
kilometers from the coast. Internal gravity waves 
affect the underwater technical objects. 

     
   Internal waves play the role of transport moving 
biomass and nutrient matters from place to place. 
Gliding upwards along the shelf they bring nutrient 
matters from the depth to more salted shoal, where 
conditions for life of fries and larvae are ideal. The 
internal waves movement in this case can be 
compared with the work of a pump. There is an 
interesting connection between internal waves and the 
sea life. In slow and long vertical stream formed by 
these waves plankton and small sea organisms can 
live. Experiments show that sea organisms use such 
vertical streams. They can swim vertically against the 
current and grow and propagate at the same time. 
Such processes take place just along the vertical 

 15



 

 16

stream while moving of the wave. They are observed 
with the help of sputnics in the Arctic districts rich 
with fish resources, for example, in straits between 
the Kara and Barents seas. 
     Special interest to research of internal gravity 
waves is connected with also intensive exploitation of  
Arctic and its natural wealth. Internal waves in Arctic 
are poorly studied as they move under ice and 
practically invisible from above, but accessible 
information about  underwater objects movement 
show their existence. Sometimes there are exclusions 
when internal gravity waves reach ice and uplift and 
lower it with definite periodicity which can be fixed 
with the help of radiolocation sounding. Influence of 
all kinds of waves can be the reason of the ice cover 
split in the Arctic. Internal waves make for the 
movement of icebergs and different kinds of 
pollution. So, the research of wave dynamics in the 
region of the Arctic shelf is an important fundamental 
scientific and practical problem aimed at ensuring 
security while. 
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