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Abstract—The problem of constructing uniform asymptotics of the far fields of the surface disturbances
produced by a localized source in a heavy homogeneous infinite-depth fluid is considered. The solutions
obtained govern the wave disturbances both inside and outside the Kelvin wave wedge and are expressed
in terms of the Airy function and its derivatives. The results of the numerical calculations of the wave
patterns are presented.
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The state of the free surface of the Ocean is influenced by both inhomogeneities occurring within the
water thickness, such as obstacles in flow and variations in the bottom relief and in the density and flow
fields, and different disturbance sources [1, 2]. To correctly interpret the data obtained in remote sensing of
the sea surface, the reasons for some or other surface phenomena must be known. At present, the problem
of studying the surface oscillation processes in a density-inhomogeneous and unsteady sea medium remains
topical, together with the correlation between the simulation results and visible rough waters. To describe
in detail a wide range of physical phenomena connected with the dynamics of surface disturbances of inho-
mogeneous and unsteady natural media fairly developed mathematical models should be invoked. Usually,
these models are sophisticated, nonlinear and dependent on many parameters, so that they can be completely
investigated only using numerical methods.

However, in certain cases the primary qualitative idea of the range of phenomena under consideration
can be obtained on the basis of simpler asymptotic models and analytical methods for their investigation.
Then these models and methods enter in the set of “blocks” of which the complete representation of the
wave dynamics consists [6–8]. In this connection, it is necessary to notice the classical fluid mechanics
problems on the construction of asymptotic solutions governing the evolution of surface disturbances excited
by localized sources in a heavy homogeneous fluid [8–11]. The model solutions thus constructed make it
possible to obtain, using the means of the computer mathematics, the asymptotic representations of the wave
fields with account for the variability and unsteadiness of the actual natural media [8, 9, 11].

In this study, we consider the problem of the construction of uniform asymptotics of the far fields of the
surface disturbances excited by a localized source in a heavy homogeneous infinite-depth fluid.

655



656 BULATOV et al.

1. FORMULATION OF THE PROBLEM AND INTEGRAL FORM
OF THE SOLUTION FOR THE FREE SURFACE ELEVATION

We will consider the steady pattern of wave disturbances on the surface of the flow of an ideal heavy
infinite-depth fluid moving at a velocity V in the positive direction of an x axis. The waves are generated by
a point source located at a depth H (the z axis is directed upwards from the undisturbed fluid), the source
intensity increasing in accordance with the q = eεt law (−∞ < t < ∞). In the solution obtained the limit,
as ε → 0, is sought. In view of the problem linearity, the results for the source of arbitrary intensity Q
(Q = const) can be obtained by multiplying the result obtained for the source of the unit intensity q by Q
(as ε → 0).

The disturbance of the potential Φ(x, y, z, t) with respect to the uniform flow moving at a velocity V
(∇Φ = (u, v, w), where u, v, and w are the disturbances of the (V, 0, 0) vector), is described by an equation
with the corresponding linearized boundary condition on the fluid surface [3–5]

ΔΦ(x, y, z, t) = eεtδ (x)δ (y)δ (z + H), z < 0,

(
∂
∂ t

+ V
∂
∂x

)2

Φ +
∂Φ
∂ z

= 0, z = 0.
(1.1)

Here, Δ is the three-dimensional Laplace operator and δ (x) is the Dirac delta function. The elevation of
the free surface of a heavy fluid Z(x, y, t) is related with the potential Φ(x, y, z, t) by the condition [3, 4]

Z(x, y, t) =−1
g

(
∂
∂ t

+ V
∂
∂x

)
Φ(x, y, z, t), z = 0. (1.2)

The solution of problem (1.1) is sought in the form Φ(x, y, z, t) = eεtϕ(x, y, z), where the function
ϕ(x, y, z) is determined from the problem

Δϕ(x, y, z) = eεtδ (x)δ (y)δ (z + H), z< 0,

(
ε + V

∂
∂x

)2

ϕ + g
∂ϕ
∂ z

= 0, z = 0.

The Fourier image of the potential ϕ(x, y, z)

Ω(μ , ν , z) =

∞∫

−∞

eiμx dx

∞∫

−∞

eiνyϕ(x, y, z)dy

is determined from the boundary value problem (k2 = μ2 + ν2)

∂ 2Ω
∂ z2 − k2Ω = δ (z + H), z< 0,

(ε − iμV )2Ω + g
∂Ω
∂ z

= 0, z = 0,

Ω→ 0, z→−∞,

whose solution at z=0 takes the form:

Ω(μ , ν , 0) =
−gexp(−kH)

(ε − iμV )2 + gk
.
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Then, in view of Eq. (1.2), the elevation η(x, y) (Z(x, y, t) = eεtη(x, y)) can be represented in the form:

η(x, y) =
iV

4π2

∞∫

−∞

e−iνy dy

∞∫

−∞

μ exp(−kH − iμx)dμ
μ2V 2 + 2iεμV − gk

. (1.3)

In expression (1.3) the parameter ε is retained only in one term of the denominator, which is necessary
for determining the displacement of the pole of the integrand relative to the real axis (into the upper or the
lower half-plane).

2. CONSTRUCTION OF THE NONUNIFORM ASYMPTOTICS OF THE SOLUTION:
INTEGRATION USING RESIDUES AND THE STATIONARY PHASE METHOD

In the polar coordinates (x = r cos α , y = r sin α), (μ = k cosψ , ν = k sinψ) expression (1.3) can be
brought into the form:

η(r, α) =
iV

4π2

2π∫

0

cosψ dψ
∞∫

0

k exp(−kH − ikr cos(ψ − α))

kV 2 cos2 ψ + 2iεV cosψ − g
dk. (2.1)

In what follows we will study the expression for the elevation η(r, α) at large values of r (to be more
precise, for gr/V 2≫ 1). The integrand corresponding to the integration variable k has a simple pole k∗ =
gA−2 − 2iεA−1, A = V cosψ which at cosψ < 0 is displaced into the upper and at cosψ > 0 into the
lower half-plane. The function η(r, α) can be represented as the sum of two terms: η(r, α) = η1(r, α) +
η2(r, α), the integration with respect to ψ being performed in the region, where cosψ < 0, for the term
η1(r, α) and in the region, where cosψ > 0, for the term η2(r, α).

To calculate the term η1(r, α) at cos(ψ − α) < 0 the contour of the integration with respect to k can
be rotated by π/2 and coincided with the positive direction of the imaginary axis in the complex plane k
(the residue at the pole k∗ is taken into account), while at cos(ψ − α)> 0 the integration contour is rotated
by −π/2; in this case, it coincides with the negative direction of the imaginary axis and the residue is not
taken into account. It can be shown that in both cases the integral along the imaginary axis is of the order of
O(1/r2), as r→ ∞. As a result, the term η1(r, α) takes the form:

η1(r, α) =− g
2πV 3

3π/2∫

π/2+α

cos−3 ψ exp

(
− gH

V 2 cos2 ψ

)
dψ + O

(
1
r2

)
.

The term η2(r, α), which is complex-conjugate with η1(r, α), is determined in a similar fashion. Finally,
the expression for the elevation η(r, α) can be represented in the form:

η(r, α) =− g
πV 3

3π/2∫

π/2+α

cos−3 ψ exp

(
− gH

V 2 cos2 ψ

)
cos(rS(ψ , α)dψ ,

S(ψ , α) =
gcos(ψ − α)

V 2 cos2 ψ
.

(2.2)

Integral (2.2) is an even function of α . Then at large values of r the asymptotics of integral (2.2) can
be calculated using the stationary phase method; for this purpose, the stationary phase points, that is, the
roots of the equation S′ψ(ψ , α) = 0 must be determined. On the integration interval (−π/2 + α , 3π/2)
there are two stationary points, namely, ψ1(α) = π/2 + α/2 + b and ψ2(α) = π + α/2 − b, (ψ1(α)<
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Fig. 1. Phase contours (phase difference between the crests is 2π).

ψ2(α)) at α > 0 and ψ1(α) = 3π/2 + α/2 + b and ψ2(α) = π + α/2 − b (ψ1(α) > ψ2(α)) at
α < 0; here, b = arcsin(3sin α)/2. The stationary points exist only for the values of α lying on the interval
−arcsin(1/3) < α < arcsin(1/3). This condition determines a region on the heavy fluid surface, where
wave motions or the Kelvin wedge, can exist [3–5].

The stationary points being known, the well-known pattern of the “ship wave” crests within the Kelvin
wedge can readily be determined in the polar coordinates: r =−2πn/S(ψ1(α), α) and r =−2πn/S(ψ2(α),
α), n = 1, 2, 3, . . . The former equality (the stationary point ψ1(α)) is responsible for the longitudinal crests
and the latter (the stationary point ψ2(α)) for the transverse crests. The minus sign is taken because at the
stationary points the phase is negative.

In Fig. 1 the phase contours (crests) are plotted; the phase difference between the neighboring crests is
2π . Here and in what follows, the calculation parameters are characteristic of the actual oceanic conditions:
V = 11 m/s and H = 6 m [1, 2].

The asymptotics of integral (2.2), as r→∞, calculated using the stationary phase method, are as follows:

η(r, α) =− g
V 3

r

∑
j=1

√
2

πr∣S′′ψψ(ψ j, α)∣ cos−3 ψ j exp

(
− gH

V 2 cos2 ψ j

)
cosΛ, (2.3)

Λ = rS(ψ j, α) +
π
4

signS′′ψψ(ψ j, α),

sign S′′ψψ(ψ1, α) = +1, signS′′ψψ(ψ2, α) =−1.

The nonuniform asymptotics (2.3) work only within the wedge at −α∗ < α < α∗ (on this interval there
are the stationary points) and no longer works as the wedge boundary is approached, where the stationary
points coalesce, that is, at α = α∗= arcsin 1/3: ψ1(α∗) = ψ2(α∗) = α∗/2 + 3π/4 and Sψψ(ψ1,2(α), α)→
0, as α → α∗.

3. CONSTRUCTION OF THE UNIFORM ASYMPTOTICS
OF THE SOLUTION

The uniform asymptotics of integral (2.2) must describe the elevation η(r, α) not only inside the Kelvin
wave wedge but also outside it and on its boundary. Within the wedge the uniform asymptotics must coincide
with the nonuniform asymptotics (2.3) obtained using the stationary phase method. Since the wave pattern
for the elevation η(r, α) is symmetric about the x axis, that is, η(r, α) is an even function of the variable
α , in what follows we will consider the case in which α > 0.

As shown above, the phase function S(ψ , α) has two turn points ψ1(α) and ψ2(α) which coalesce with
one another, as α → α∗ = arcsin(1/3): ψ1(α∗) = ψ2(α∗) = 3π/4 + α∗ = ψ∗. Thus, for constructing the
uniform asymptotics it is necessary to solve the classical problem of the asymptotics of an integral with two
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coalescing turn points. Following [6, 7, 12] we can represent integral (2.2) in the form:

η(r, α) =

3π/2∫

π/2+α

f (ψ)cos(rS(ψ , α))dψ , (3.1)

f (ψ) =−gexp(−ghA−2)/πA3.

Then we make the implicit change of the integration variable

S(ψ , α) = a0 + σs − s3

3
. (3.2)

In this case, the stationary point ψ1(α) is associated with the point s1 =−√σ and the point ψ2(α) with
s2 =

√
σ . Then from Eq. (3.2) we obtain

a0(α) =
S(ψ1) + S(ψ2)

2
, σ(α) =

(
3
4

(S(ψ2) − S(ψ1))

)2/3

. (3.3)

After the change (3.2) integral (3.1) takes the form:

η(r, α) =

∞∫

−∞

G(s)cos(r(a0 + σs − s3/3))ds, (3.4)

G(s) = f (ψ)
dψ
ds
.

The lower limit of integral (3.4) is actually determined from Eq. (3.2) at ψ = π/2 + α and is the root
of the equation a0(α) + σ(α)s − s3/3 = 0. This equation has a unique real root s∗(α) which can be
determined in the explicit form using the Cardano formula

s∗(α) =

(
3
4

)1/3[
(
√

S(ψ2) +
√

S(ψ1))2/3 + (
√

S(ψ2) −
√

S(ψ1))2/3],
where s∗(α)→−∞, as α→ 0, and s∗(α)→∞, as α→ π . The possibility of changing the lower limit s∗(α)
for −∞ will be discussed below, together with the estimation of the error thus made.

In the vicinities of the stationary points the slowly varying function G(s) can be represented in the form
(the complete expansion is given in [12]):

G(s) = b0 + b1s, (3.5)

b0(α) =
G(
√

σ) + G(−√σ)

2
, b1(α) =

G(
√

σ) − G(−√σ)

2
√

σ
. (3.6)

The values of dψ/ds entering in G(±√σ) are determined by means of differentiating expression (3.2)
with respect to the variable s

G(
√

σ) = f (ψ2)

√
−2
√

σ(α)

S′′ψψ(ψ2, α)
, G(−√σ) = f (ψ1)

√
2
√

σ(α)

S′′ψψ(ψ1, α)
. (3.7)

Substituting expansion (3.5) in expression (3.4) we obtain

μ(r, α) = J1(r, α) + J2(r, α). (3.8)
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Fig. 2. Cross section of the elevation field: (1) stationary phase and (2) uniform asymptotics).

Fig. 3. Elevation field on the heavy fluid surface (uniform asymptotics).

Here, the first term can be expressed in terms of the Airy function Ai(x) =
1

2π

∞∫

−∞

cos(xt − t3/3)dt and

the second term in terms of its derivative [12–14]

J1(r, α) =
2π
r1/3

b0(α)cos(ra0(α))Ai(σ(α)r2/3),

J2(r, α) =
2π
r1/3

b1(α)sin(ra0(α))Ai′(σ(α)r2/3),

(3.9)

where b0(α) and b1(α) are determined in Eq. (3.6) and σ(α) and a0(α) in Eq. (3.3).
The uniform asymptotics (3.8) represent even function relative to α = π/2. The wave pattern is also

symmetric about the Oy axis, which is physically impossible, since far upstream disturbances are absent.
This is due to the change of the lower integration limit s∗(α) in Eq. (3.4) for −∞, which corresponds to
the change of the lower integration limit π/2 + α for π/2 in Eq. (2.2). Then the integrals obtained can be
expressed in terms of the Airy function and its derivative. At 0<α < π/2 this change gives only an addition
of the order of O(1/r2), since the stationary points belong to the interval (s∗(α), ∞). At π/2 < α < π this
change cannot be made but it can be shown that the original integral (2.2) is of the order of O(1/r2) (one
can convince oneself in it doubly integrating Eq. (2.2) by parts).

As a result, in the former case the main contribution into the asymptotics of integral (2.2) is made by
the stationary points (the order of the integral is O(1/r1/3)), while in the latter case the contribution in the
integral is made only by the end point of the integration interval s∗(α) (the order of the integral is O(1/r2)).
Thus, the uniform asymptotics (3.8) work at large values of r and 0 < α < π/2, while at π/2 < α < π
the wave field decreases as 1/r2. These asymptotics are regular on the wedge boundary at α = α∗, where
S′(ψ) = 0 and S′′(ψ) = 0, and in this case b0(α∗) = G(0) and b1(α∗) = G′(0).

To determine G(0) one must convince oneself that the function dψ/ds is regular at s = 0 and for deter-
mining G′(0) d2ψ/ds2 must be regular at zero. Then differentiating expression (2.4) three and four times
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with respect to the variable ψ we obtain

dψ
ds

=

(
− 2

S′′′(ψ∗)

)1/3

, s = 0,

d2ψ
ds2 =− SIV(ψ∗)

σS′′′(ψ∗)

(
− 2

S′′′(ψ∗)

)2/3

, s = 0.

At large values of r and at α not too close to α∗ the uniform asymptotics go over into the nonuniform
asymptotics (2.3). One can convince oneself in it taking in Eq. (3.8) the asymptotics of the Airy function and
its derivative for large positive values of the argument (x→ ∞) instead of the functions themselves [13, 14]:

Ai(x)∼ x−1/4 cosT/
√

π, Ai′(x) ∼ x1/2 sinT/
√

π, T = 2x3/2/3 − π/4.

Then both terms in Eq. (3.8) are of the order of O(1/
√

r). In the immediate vicinity of the wedge
boundary only the first term (of the order of O(1/r1/3) may be retained in Eq. (3.8), while outside the wedge
both terms, as well as their asymptotics, are exponentially small.

In Fig. 2 a cross section of the elevation wave field (x = 500 m and Q = 103 m3/s) calculated by formulas
(2.3) and (3.8) is presented. In Fig. 3 the three-dimensional elevation wave pattern on the heavy fluid surface
is plotted; it is calculated by formula (3.8), that is, it represents the uniform asymptotics of the solution.

Summary. The asymptotic solutions constructed are uniform and make it possible to describe the far
fields of the surface disturbances produced by localized sources both inside and outside the Kelvin wave
wedge. The asymptotics of the far fields of the surface wave disturbances make it possible to effectively cal-
culate the main parameters of the wave fields and, moreover, to qualitatively analyze the solutions obtained.
Thus, wide possibilities for an analysis of the general wave patterns are opened, which is important for the
adequate formulation of the mathematical models of wave dynamics and for making express estimations
during full-scale measurements of the wave fields in the sea medium.

The study was carried out with the support of the Russian Foundation for Basic Research (projects
Nos. 14-01-00071, 14-01-00466, and 14-08-00701).
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