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Introduction

The dynamics of wave motion in the ocean is currently of great interest because
they are important in geophysics and oceanology. As a rule, theoretical analysis of
these phenomena is based on the asymptotic methods, because the study of
unperturbed hydrodynamic equations leads to asymptotic expansions (ansatzs,
which is a German term for a type of solutions). These expansions permit solving
the problems of perturbed equations, which can be used to describe the effects of
nonlinearity, inhomogeneity, and non-stationary behavior of the real ocean. To
obtain a detailed description of a wide range of physical phenomena related to wave
dynamics of the stratified horizontally inhomogeneous unsteady ocean, it is nec-
essary to start from the sufficiently developed mathematical models, which are
usually quite complicated, nonlinear, and multi-parametric. They can be investi-
gated completely only using efficient numerical methods. However, there are sev-
eral cases, in which a preliminary qualitative concept of the phenomena under study
can be obtained on the basis of simper asymptotic models and analytic methods for
studying these models. These models then enter a set of “blocks” used to construct
the complete pattern of wave dynamics, which permits discovering the correlation
between different wave phenomena and their relationship. Sometimes, despite the
seeming simplicity of the model assumptions, a successive choice of the solution
form allows one to obtain physically interesting results [1, 2, 5, 14].

The propagation of internal gravity waves (IGW) in the ocean is strongly
affected by the horizontal inhomogeneity and unsteady behavior of the basic
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hydrophysical parameters. In this contribution, we generalize a method of geo-
metrical optics, i.e., the space-time ray method, which permits solving the problem
of mathematical modeling of IGW dynamics in the horizontally inhomogeneous
and vertically stratified ocean. The ray representations agree well with the intuitive
and empirical concepts of IGW propagation in the real ocean. This method is
sufficiently universal, and in many cases, this is the only possible method for
approximate calculations of wave fields in the ocean. The most typical horizontal
inhomogeneities of the real ocean are the variations in the bottom topography of the
ocean, horizontal inhomogeneities of the density field, and unsteady ocean currents.
An exact analytic solution can be obtained, for example, using the method of
separation of variables only if the density distribution and the bottom topography
can be described by sufficiently simple model functions. If the bottom topography
and the ocean stratification are arbitrary, then one can construct only the asymptotic
representations of the solution or solve the problem numerically. But the numerical
solution does not permit obtaining and analyzing the qualitative characteristics of
the wave field at large distances, which is necessary, for example, when solving the
IGW detection problem by remote methods including, for example, radar imaging
[8, 10, 12, 13, 15].

The mathematical modeling of IGW wave dynamics in the horizontally inho-
mogeneous and vertically stratified ocean is possible on the basis of a modified
version of the space-time ray method (a method of geometrical optics). The specific
form of asymptotic representations can be determined by solving the problems,
which describe the IGW dynamics in the vertically stratified, horizontally homo-
geneous, and steady-state ocean. As a rule, when studying the evolution of IGW
packets in the ocean with slowly varying and unsteady parameters, it is assumed
that this wave packet is locally harmonic. In contrast to the majority of works, in
which this problem has been studied, the proposed modified method of geometrical
optics allows one to describe the structure of wave packets near singular surfaces
such as caustics and wave fronts [3, 4, 6, 7].

The term “geometrical optics” has different meanings in the scientific literature.
The geometrical optics understood in the narrow (or ray) sense deals only with the
methods for constructing images by using the rays, while the geometrical optics
understood in the wider (or wave) sense is a method for obtaining approximate
descriptions of wave fields. In the wave interpretation, which is used in this paper,
the rays, as a rule, form only the geometric skeleton, on which the wave filed
is “sewn on”. According to the two previous interpretations of the geometrical
optics, two periods in its development exist. The first ray period was ideologically
completed by Hamilton’s fundamental works, which significantly influenced the
development of the classical mechanics. The construction of rays underlies the
instrumental optics, which is mainly oriented to design various optical devices. The
contemporary wave period originates from the Debye’s works, which decisively
influenced the formation of ray concepts in the wave theory [5].

The asymptotic representation of the solutions of wave packet propagation in the
ocean with horizontally inhomogeneous density and numerical computations at the
typical oceanic parameters testify that the horizontal inhomogeneity significantly
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affects the real IGW dynamics in the ocean. All results of wave dynamics modeling
presented in this contribution can be used for arbitrary density distributions and
other parameters of the stratified ocean. It is necessary to consider them in the
context of consistency with the available data of IGW full-scale measurements in
the ocean. Such methods for analyzing the wave fields are important not only
because they are illustrative, universal, and efficient in various problems, but also
because they can serve as a semi-empirical basis for the other approximate methods
in the theory of wave packet propagation in the ocean.

The waves in media with slowly varying parameters have been studied in many
publications, while the amount of works dealing with the problem of studying IGW
in the media with variable parameters is quite rare (mainly because of significant
mathematical difficulties encountered in these problems). In the first section of this
paper, we present the basics of the space-time ray method (a method of geometrical
optics) with regard to the special characteristics of IGW, which permits studying the
wave dynamics in the horizontally inhomogeneous and vertically stratified ocean.
In the second section, we discuss the problems of IGW propagation in the stratified
ocean of variable depth.

IGW Fields in the Horizontally Inhomogeneous Ocean

Our analysis starts from a linear system of hydrodynamic equations [8, 10, 13, 15]

ρ0
∂u1
∂t = − ∂p

∂x , ρ0
∂u2
∂t = − ∂p

∂y , ρ0 ∂w
∂t = − ∂p

∂z + gρ,
∂u1
∂x + ∂u2

∂y + ∂w
∂z =0, ∂ρ

∂t + u1
∂ρ0
∂x + u2

∂ρ0
∂y +w ∂ρ0

∂z =0.
ð1:1Þ

Here (u1, u2, w) are components of the IGW velocity vector; p and ρ are per-
turbations of the pressure and density; g is the acceleration of gravity (the z axis is
directed downwards). Using the Boussinesq approximation, which means that the
unperturbed density ρ0ðz, x, yÞ in the first three equations in system (1.1) is assumed
to be constant, we reduce system (1.1) to the form:

∂
4w

∂z2∂t2 +Δ ∂
2w
∂t2 + g

ρ0
Δðu1 ∂ρ0

∂x + u2
∂ρ0
∂y +w ∂ρ0

∂z Þ=0,
∂

∂t ðΔu1 + ∂
2w

∂z∂xÞ=0, ∂

∂t ðΔu2 + ∂
2w

∂z∂yÞ=0, Δ= ∂
2

∂x2 +
∂
2

∂y2 .
ð1:2Þ

We use the “rigid lid” condition at the surface and zero velocity at the bottom:
W =0, (z = 0, −H), where H is the ocean depth as the boundary conditions. We
assume that, in the media with horizontally inhomogeneous density field, the
steady-state flows due to this field can be neglected. Indeed, it follows from the
hydrodynamic equations that if the unperturbed density is a function of horizontal
coordinates, then the existence of the steady-state density distribution ρ0ðz, x, yÞ
implies the existence of steady-state flows. These flows are rather slow, and they
can be neglected in the first approximation. Therefore, it is usually assumed that
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ρ0ðz, x, yÞ is the background density field formed under the action of mass forces
and non-adiabatic sources, and this field is given a priori, for example, by exper-
imental data [2, 5].

Now we consider harmonic waves (u1, u2, w) = exp ðiω tÞðU1,U2,WÞ. System
(2) cannot be solved by the method of separation of variables, and therefore it is
necessary to use asymptotic methods. The scales of horizontal variations in the
ocean parameters can be greater than the scales of vertical variability [8, 10, 13, 15].
Further we introduce the dimensionless variables: x* = x ̸L, y* = y ̸L, z* = z ̸h,
where L is the characteristic scale of horizontal variations of density ρ0 and h is the
characteristic scale of vertical variations in ρ0 (for example, the width of the
thermocline). In the dimensionless coordinates, system (1.2) becomes (hereinafter,
the asterisk in the indices is omitted)

−ω 2ð∂2W
∂z2 + ε2 ΔWÞ+ ε2 g1

ρ0
ðεU1

∂ρ0
∂x + εU2

∂ρ0
∂y +W ∂ρ0

∂z Þ=0,

εΔU1 + ∂
2W
∂z∂x =0, εΔU2 + ∂

2W
∂z∂y =0, ε= h

L < <1, g1 =
g
h .

ð1:3Þ

We seek for the asymptotic solution of (1.3) in the form typical for the method of
geometrical optics [7].

Vðz, x, yÞ= ∑
∞

m=0
ðiεÞmVmðz, x, yÞ expðSðx, yÞ ̸iεÞ,

Vðz, x, yÞ= ðU1ðz, x, yÞ,U2ðz, x, yÞ,Wðz, x, yÞÞ,

where function Sðx, yÞ and vector function Vm, m = 0, 1…, are sought. As a rule,
below, we determine only the leading term of this asymptotic expansion for the
vertical velocity component W0ðz, x, yÞ. We obtain the following from the two last
equations in (1.3)

U10 = −
i∂S ̸∂x
∇Sj j2

∂W0

∂z
, U20 = −

i∂S ̸∂y
∇Sj j2

∂W0

∂z
, ∇Sj j= ∂S

∂x

� �2

+
∂S
∂y

� �2

.

Equating the terms of order O(1), we obtain the equation for function W0ðz, x, yÞ.
This equation is written as

∂
2W0ðz, x, yÞ

∂z2
+ ∇Sj j2 N2ðz, x, yÞ

ω2 − 1
� �

W0ðz, x, yÞ=0,

W0ð0, x, yÞ=W0ð−H, x, yÞ=0,
ð1:4Þ

where N2ðz, x, yÞ= g1
ρ0

∂ρ0
∂z is the Brunt–Väisälä frequency depending on the vertical

and horizontal coordinates. It is well known that the basic boundary-value vertical
spectral problem for internal waves (1.4) has countably many eigenfunctions W0n

and eigenvalues Knðx, y,ωÞ≡ ∇Snj j. Functions W0nðz, x, yÞ and Knðx, y,ωÞ are
assumed to be known; index n is omitted because we assume that all calculations
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are carried out for a separate wave mode. We use the eikonal equation
∂S ̸∂xð Þ2 + ∂S ̸∂yð Þ2 =K2ðx, yÞ to determine function Sðx, yÞ. In the plane case, the
initial conditions for eikonal S are posed on line L: x0ðαÞ, y0ðαÞ, Sðx, yÞjL = S0ðαÞ.
To solve the eikonal equation, we construct the rays, i.e., the characteristics of this
equation, which have the following form

dx
dσ

=
p

Kðx, yÞ ,
dp
dσ

=
∂Kðx, yÞ

∂x
,

dy
dσ

=
q

Kðx, yÞ ,
dq
dσ

=
∂Kðx, yÞ

∂y
, ð1:5Þ

where p= ∂S ̸∂x, q= ∂S ̸∂y, dσ is the ray length element. The initial conditions of
p0 and q0 for solution (1.5) are determined by solving the following system

p0
∂x0
∂α

+ q0
∂y0
∂α

=
∂S0
∂α

, p20 + q20 =K2 x0ðαÞ, y0ðαÞð Þ

whose solution and the initial conditions x0ðαÞ, y0ðαÞ, p0ðαÞ, q0ðαÞ determine the
ray x= xðσ, αÞ, y= yðσ, αÞ. After the rays are constructed, eikonal S can be deter-
mined by integrating along the ray: S= S0ðαÞ+

R σ
0 K xðσ, αÞ, yðσ, αÞð Þdσ. Eigen-

function W0ðz, x, yÞ is calculated up to multiplication by arbitrary function A0ðx, yÞ:
W0ðz, x, yÞ=A0ðx, yÞ f0ðz, x, yÞ, where f0ðz, x, yÞ is the solution of the basic vertical
spectral problem with normalization

RH
0 ðN2ðz, x, yÞ−ω2Þf 20 ðz, x, yÞdz=1. Then,

after rather cumbersome analytic calculations, we obtain the conservation law along

the eikonal characteristics: d
dσ ln A2

0ðx, yÞIðx, yÞ
K2ðx, yÞ

� �
=0, where Iðx, yÞ is the geometric

divergence of the rays (characteristics). We note that the wave energy flux is
proportional to A2

0K
− 1R, where R is the width of an elementary ray tube; therefore,

the quantity equal to the wave energy divided by the modulus of the wave vector is
preserved in this case.

The long-range IGW fields in the real ocean are, as a rule, non-harmonic wave
packets. Indeed, at a far distance form perturbation sources, the complete wave field
is a sum of separate wave modes whose asymptotics, depending on the stratifica-
tion, depth, and other parameters of the ocean, can be expressed in terms of the Airy
function or the Fresnel integrals. Therefore, to study the problem of wave packet
evolution in a horizontally smoothly inhomogeneous and unsteady stratified med-
ium, it is necessary to use another ansatz [2, 5, 7].

We introduce slow variables x* = ε x, y* = ε y, t* = ε t (since z is not assumed
to be a slow variable, we omit the asterisk in the index), where ε= λ ̸L≪ 1 is a
small parameter characterizing the smoothness of the medium variations along the
horizontal line (λ is the characteristic wave length, and L is the scale of horizontal
inhomogeneity). Then system (1.2) for determining the velocity components
ðU1,U2,WÞ in these slow variables becomes

Internal Gravity Waves in Horizontally Inhomogeneous Ocean 113



∂
4W

∂z2∂t2 + ε2 ∂
2W
∂t2 + g

ρ0
ΔðεU1

∂ρ0
∂x + εU2

∂ρ0
∂y +W ∂ρ0

∂z Þ=0,

εΔU1 + ∂
2W
∂z∂x =0, εΔU2 + ∂

2W
∂z∂y =0.

ð1:6Þ

Further we consider the superposition of harmonic waves (in slow variables

x, y, t) W =
R
ω ∑

∞

m=0
ði εÞmWmðω, z, x, yÞ exp i

ε ω t− Smðω, x, yÞ½ �� �
dω, where func-

tions Smðω, x, yÞ are assumed to be odd with respect to ω and min
ω

∂S ̸∂ω is attained

at ω=0 (for all x and y). We substitute this representation into (1.6) and see that
function Wmðω, z, x, yÞ for ω=0 has a pole of order m. Therefore, the model
integrals, or phase functions RmðσÞ, for some terms of the asymptotic series are
expressions RmðσÞ= 1

2 π

R∞
−∞ i ̸ωð Þm− 1 exp i ðω3 ̸3− σωÞð Þdω, where the contour of

integration bypasses point ω=0 from above, which ensures the exponential decay
of functions RmðσÞ for σ≫ 1. Functions RmðσÞ have the following property
dRmðσÞ
dσ =Rm− 1ðσÞ, where R0ðσÞ=Ai′ðσÞ, R1ðσÞ=AiðσÞ, R2ðσÞ=

R σ
−∞ AiðuÞdu, etc.

Obviously, starting from the corresponding properties of the Airy integrals, we can
conclude that functions RmðσÞ are related as R− 1ðσÞ+ σR1ðσÞ=0,
R− 3ðσÞ+2R0ðσÞ− σ2R1ðσÞ=0. For the model integrals RmðσÞ describing the
long-range IGW fields in the deep ocean, one can use the following expressions
R0ðσÞ=Re

R∞
0 exp − itσ− it2 ̸2ð Þ dt≡ReΦðσÞ; in this case, functions Rm ðσÞ sat-

isfy the recurrence relations R− 3 ðσÞ− 2iR− 1 ðσÞ− iσR− 2ðσÞ=0 and
R− 1ðσÞ+ iσR0 ðσÞ=0 [2, 5, 7]. It follows from the above and the structure of the
first term of the uniform asymptotics (Airy or Fresnel wave) in a stratified and
horizontally homogeneous medium that the solution of system (1.6) can be sought
in the following form (index n is omitted for a separate wave mode)

W = ε0W0ðz, x, y, tÞR0ðσÞ+ εaW1ðz, x, y, tÞR1ðσÞ+ ε2aW2ðz, x, y, tÞR2ðσÞ+⋯,
U= ε1− aU0ðz, x, y, tÞR1ðσÞ+ εU1ðz, x, y, tÞR2ðσÞ+ ε1+ aU2ðz, x, y, tÞR3ðσÞ+⋯,

where U is the vector of IGW horizontal velocity and the phase function argument
σ= Sðx, y, tÞ ̸að Þaε− a is assumed to be of the order of unity. This expansion agrees
well with the general approach of the method of geometrical optics and the
space-time ray method. Its generalization is used to study the dynamics of IGW
fields in the horizontally inhomogeneous stratified ocean.

We also note that this structure of the solution implies that, in a horizontally
inhomogeneous medium, the solution depends on both the “fast” (vertical coordi-
nate) and “slow” (horizontal coordinates) variables. As a rule, the solution is sought
in “slow” variables, and the structure elements depending on “fast” variables are
obtained as integrals of some functions slowly varying along the space-time rays.
This choice of the solution permits describing the uniform asymptotics of IGW
fields propagating in the stratified ocean with slowly varying parameters, which is
true both near and far from the wave fronts of a separate wave mode. If it is
necessary to describe the behavior of the field only near the wave front, then one
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can use one of the methods of the geometrical optics, i.e., the “traveling wave”
method, and the weakly dispersion approximation in the form of the corresponding
local asymptotics to seek the representation of the phase function argument σ in the
form σ= αðt, x, yÞðSðt, x, yÞ− ε tÞε− a; here function Sðt, x, yÞ describes the wave
front position. It is found by solving the eikonal equation ∇2S= c− 2ðx, y, tÞ, where
cðt, x, yÞ is the maximal IGW group velocity of the corresponding wave mode, i.e.,
the first term in the expansion of the dispersion curve at zero. Function αðt, x, yÞ (the
second term of the dispersion curve expansion) describes the space-time evolution
of the pulse width of non-harmonic Airy or Fresnel waves and can be found from
some conservation laws along the eikonal equation characteristics whose specific
form is determined by the physical conditions of the problems under study.

Further we compare the analytic results with the results of the analysis of
measurements of IGW variability in a real medium with horizontally varying
characteristics, namely, in the Northwest Pacific, according to the data recorded by
moorings in the “Megapolygon” experiment in the Northwest Pacific. The mea-
surements of the currents and the temperature recorded by the “Megapoly-
gon” moorings allowed us to study the variability of tidal internal waves over the
area of 460 × 520 km. The length of the tidal internal wave was calculated by
integration of the basic IGW spectral equation with the real depth distribution of the
Vaisala-Brunt frequency and with zero boundary conditions at the ocean surface
and the ocean floor taking into account the Earth’s rotation. The wave length of the
first mode in the “Megapolygon” area is equal approximately to 130 km, the wave
length near the Emperor Ridge is greater (167 km), and it is equal to 156 km at a
distance of 2000 km to the east. The wave propagation direction is also very stable
and varies from 240° to 300°, which corresponds to the actual wave propagation to
the west and northwest from the Emperor Ridge. Some diffraction of tidal internal
waves was observed in the “Megapolygon” study site, i.e., the direction of wave
propagation varied from the northwest in the southeast of the site and to the west in
its northwest part [5].

Let us consider the amplitude variations of the internal tide in the course of its
propagation to the west and to the east from the Emperor Ridge. The IGW
amplitudes were calculated from the deviations of the temperature values measured
on moorings; then, the values were divided by the average vertical gradient of
temperature. Figure 1 illustrates the variations in the tidal internal wave amplitude
versus distance. The calculations show that the IGW amplitude decreases

Fig. 1 The tidal IGW
amplitude A versus the
distance to the Emperor
Seamounts
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approximately by 10% at the distance equal to the length of the tidal internal wave
(130–150 km) [11].

We can also estimate the influence of different factors, including the horizontal
inhomogeneity of density, on the IGW decay. In the framework of the theory
discussed above, we consider the evolution of IGW frequency ω corresponding to
the semidiurnal period T= 12 h, which also admits slow variations in the stratifi-
cation along the wave propagation path. The real geometry of the experiment
allows us to assume that the problem under study is two-dimensional, which means
that the stratification depends only on two variables: depth z and distance x along
the wave propagation path.

Now we consider the case of constant depth H and stratification N linearly
depending only on x: NðxÞ=N1 + ðN2 −N1Þ x ̸L, where L is the distance between
the two observation points, x= x1 = 0 is the initial point, x= x1 = L is the end point,
and N1, 2 =Nðx1, 2Þ. We consider only the first mode η1ðz, xÞ of the amplitude of the
vertical displacement of particles and omit its index. We seek the amplitude ηðz, xÞ
in the form ηðz, xÞ=AðxÞ f ðz, xÞ, where f ðz, xÞ is the normalized eigenfunction of
the standard boundary-value problem for the equation of internal waves with the
normalization

RH
0 ðN2ðxÞ−ω2Þ f 2ðz, xÞ dz=1, which has the form

f ðz, xÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
HðN2ðxÞ−ω2Þ

q
sinðπ z ̸HÞ. Amplitude A(x) depending only on x is deter-

mined from the conservation law: A2ðx1Þ
k2ðx1Þ daðx1Þ=

A2ðx2Þ
k2ðx2Þ daðx2Þ, where kðxÞ is the

absolute value of the horizontal wave vector, and daðxÞ is the width of an ele-
mentary wave tube. Since the problem is two-dimensional, the width of the ray tube
does not vary along the ray and the conservation law is simpler: AðxÞ ̸kðxÞ= const.
Since we consider small values of ω, the velocity of wave propagation is close to
the maximum group velocity cðxÞ=NðxÞH ̸π; hence, the wave number is equal to
kðxÞ=ωπ ̸NðxÞH and the corresponding wave length is equal to
λðxÞ=2NðxÞH ̸ω. Then, under the assumption that the observation points are at the
same depth, it follows from the conservation law ðA1, 2 =Aðx1, 2ÞÞ that A1N1 =A2N2

or A2 =A1λ1 ̸λ2. Then the total amplitude attains the following values

W1, 2 =A1, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

H ðN2
1, 2 −ω2Þ

q
, which implies W2 =W1

N1
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2

1 −ω2Þ
ðN2

2 −ω2Þ

r
or W2 =W1λ

2
1 ̸λ22,

because ω≪N, i.e., the amplitude of the internal gravity wave is inversely pro-
portional to the squared wave length. The wave travel time τ along the horizontal
ray is determined from the equation of characteristics dx

dt = cðxÞ, where
cðxÞ= ðN1 + axÞH ̸π and a= ðN2 −N1Þ ̸L. Integrating this equation, we obtain the

wave travel time τ= π
aH ln

N2
N1

� �
= T L

ðλ2 − λ1Þ ln
λ2
λ1

� �
. The available data of full-scale

tests give the following values of the basic parameters of the problem: λ1 = 167 km,
λ2 = 156 km, L= 2000 km. The wave attenuation coefficient without the wave
length variations taken into account, which describes the amplitude decrease versus
wave length denoted by β, gives the value of β: β=0.2167 ̸2000 = 0.874 with regard
to relation W2 ̸W2 = 0.2≡ βt ̸T = βL ̸λ derived from the observation results. The
attenuation with regard to the wave length variations along the ray, W2 ̸W1 = βτ ̸T ,
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with the theoretically calculated time of the wave travel time τ gives the following
value β=0.878. Thus, these estimates allow us to conclude that the influence of the
density field inhomogeneities, which is taken into account in the above-described
method for asymptotic representation of the wave fields, is one of the factors
determining the scales of the space attenuation of IGW fields observed in field
measurements.

Fields of IGW in the Ocean of Variable Depth

We consider one of the problems of IGW propagating in the stratified ocean of
variable depth. In the framework of the linear theory, we study the non-viscous
incompressible inhomogeneous medium with unperturbed density ρ0ðzÞ, which is
bounded by surface z=0 and ocean floor z= γ y (the z axis is directed upwards, γ is
the ocean floor slope). At point x= x0, y= y0, z= z0 at the slope, there is a point
mass source of power Q depending on time as expð− iω tÞ. The system of hydro-
dynamic equations for small perturbations of density ρ*, pressure p*, and velocity
components ðu1, u2,wÞ is written as [2–6]

ρ0
∂u1
∂t = − ∂p*

∂x , ρ0
∂u2
∂t = − ∂p*

∂y , ρ0
∂w
∂t = − ∂p*

∂z + gρ*
∂u1
∂x + ∂u2

∂y + ∂w
∂z =Q expð− iω tÞδðx− x0Þδðy− y0Þδðz− z0Þ,

∂ρ*
∂t +w ∂ρ0

∂z =0,

ð2:1Þ

where g is the acceleration of gravity. As the boundary conditions we pose the
“rigid lid” condition at the ocean surface and zero mass flux at the ocean bottom

w=0 at z=0, w+ u2 γ=0 at z= − γ y ð2:2Þ

Under the assumption that the time-dependence of all solutions is harmonic
ðp*, ρ*, u1, u2,wÞ= expð− iω tÞðp, ρ,U1,U2,WÞ, we obtain the following system of
equations with boundary conditions (2.2)

iωρ0U1 =
∂p
∂x , iωρ0U2 =

∂p
∂y , iωρ0W = − c2∂p

∂z ,
∂U1
∂x + ∂U2

∂y + ∂W
∂z =Q δðx− x0Þδðy− y0Þδðz− z0Þ, iωρ= W∂ ρ0

∂z ,
ð2:3Þ

where c2 =ω2 ̸ðN2 −ω2Þ and N2ðzÞ= − g
ρ0

∂ρ0
∂z is the Brunt-Väisälä frequency which

is assumed constant: NðzÞ=N = const. These assumptions can be used to study the
IGW fields in many regions of the World Ocean [12]. In the Boussinesq approx-
imation, system (2.3) reduces to a single equation, for example, for pressure per-
turbations p with the corresponding boundary conditions
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∂
2p
∂z2

−
1
c2

∂
2p
∂y2

+
∂
2p
∂x2

� �
= − iωQρ0δðx− x0Þδðy− y0Þδðz− z0Þ ̸c2, ð2:4Þ

∂p
∂z

=0 at z=0,
∂p
∂z

−
γ
c2

∂p
∂y

=0 at z= − γ y. ð2:5Þ

Since the variations in ρ0ðzÞ are relatively small in the ocean, the value of ρ0 in
the right-hand side of (2.4) is understood, for example, as the value of the sea water
density at the surface, i.e., we set ρ0 = ρ0ð0Þ= const. Solution pðx, y, zÞ must tend to
zero as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
→∞. After function pðx, y, zÞ is determined, velocity com-

ponents ðU1,U2,WÞ can be found from the first three equations of system (2.3), and
density ρ is determined from the fifth equation in this system.

We change the variables as

y= rchφ, z= − crshφ, r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − z2 ̸c2

p
,φ=

1
2
ln
cy− z
cy+ z

ð2:6Þ

We perform the Fourier transform with respect to variable x (without loss of
generality, we can set x0 = 0). Since the absolute value of the Jacobian of transition
from the coordinates ðy, zÞ to ðr,φÞ is equal to cr, problem (2.4), (2.5) implies the
following plane boundary-value problem for the Fourier transform Pðr,φ, lÞ of
function pðr,φ, xÞ

∂
2P
∂r2

+
∂P
r∂r

−
1
r2
∂
2P
∂φ2 − l2P=

q
r
δðr− r0Þδðφ−φ0Þ, ð2:7Þ

∂P
∂φ

=0 at φ=0;
∂P
∂φ

=0 at φ=φr, ð2:8Þ

r0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y20 − z20 ̸c2

q
, φ0 =

1
2
ln
c y0 − z0
c y0 + z0

, φr =
1
2
ln
c+ γ

c− γ
, q= iωQρ0 ̸c. ð2:9Þ

The solution of three-dimensional boundary-value problem (2.4), (2.5) with
respect to variables ðr,φ, xÞ is obtained from the solution of the plane problem
(2.7), (2.8) by using the inverse Fourier transform

pðr,φ, xÞ= 1
2π

Z+∞

−∞

Pðr,φ, lÞ expðilxÞdl. ð2:10Þ

We assume that the ocean floor slope γ is less than c or, in the trigonometric
terminology, we assume that the ocean bottom slope is subcritical (the critical slope
is γ = c) [3–6].

The homogeneous Eq. (2.7) with zero right part has real solutions
Pðr,φ, lÞ=KiμðlrÞ cosðμφÞ decreasing at infinity, where μ is an arbitrary real
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number and KiμðlrÞ is the Macdonald function with imaginary index satisfying the
modified parametric Bessel equation LKiμðlrÞ=0, where

L= r2 ∂
2

∂r2 + r ∂

r∂r + ðμ2 − r2l2Þ. We note that function KiμðlrÞ is real if the values of μ
are real and argument lr is positive. Hence, we write the delta function δðr− r0Þ
using a pair of direct and inverse Kantorovich-Lebedev transformations [5, 6]

FðμÞ=
Z+∞

0

KiμðxÞ f ðxÞx dx, f ðxÞ= 2
π2

Z+∞

0

shðπμÞKiμðxÞFðμÞμdμ .

This implies the expansion of the delta function (completeness condition) in the
form

δðr− r0Þ= 2
r π2

Z+∞

0

shðπμÞKi μðlrÞKi μðlr0Þμdμ: ð2:11Þ

We seek the solution of problem (2.7) in the form

Pðr,φ, lÞ= 2q
π2

Z+∞

0

shðπμÞKiμðlrÞKiμðlr0ÞΦμðμÞμdμ, ð2:12Þ

where the function of the angular variable ΦμðφÞ is still unknown. Substituting
(2.11) and (2.12) into (2.7), we obtain the boundary-value problem for determining
this function

d2ΦμðφÞ
dφ2 + μ2ΦμðφÞ= − δðr− r0Þ,

dΦμð0Þ
dφ = dΦμðφrÞ

dφ =0.
ð2:13Þ

It follows from (2.13) that ΦμðφÞ is the angular Green function of the form

ΦμðφÞ= −
1

μ2φr
−

2
φr

∑
∞

n=1

cosðφμnÞ cosðφ0μnÞ
μ2 − μ2n

, μn =2π n ̸ ln
c+ γ
c− γ

� �
, n≥ 1.

ð2:14Þ

In the expression for Pðr,φ, lÞ in (2.12), we consider a single wave mode ðn≥ 1Þ

Pnðr,φ, lÞ= −
4q cosðφμnÞ cosðφ0μnÞ

φrπ2

Z+∞

0

shðπμÞKi μðlrÞKiμðlr0Þμdμ
μ2 − μ2n

. ð2:15Þ
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Here, the integral is understood in the sense of the principal value. Formula
(2.15) can also be used for n=0 if we set μ0 = 0 and decrease the coefficient of the
integral by a factor of two. First, we consider the case r> r0. To deform the contour
of integration over μ in expression (15), we use formula KνðtÞ= πðI− νðtÞ−
IνðtÞÞ ̸ð2 sinðπμÞÞ which, in this case with ν= iμ for function Kiμðlr0Þ, becomes

Kiμðlr0Þ= − πIm ðIiμðlr0ÞÞ ̸shðπμÞ; ð2:16Þ

because functions IiμðxÞ and Iiμð− xÞ are complex conjugate function. The inter-
grand in (2.15) is even with respect to μ; hence, we can use (2.16) to obtain

Pnðr,φ, lÞ= 2q cosðφμnÞ cosðφ0μnÞ
πφr

Im
Z+∞

−∞

KiμðlrÞIiμðlr0Þμdμ
μ2 − μ2n

. ð2:17Þ

Now the contour of integration in (2.17) can be closed in the lower half-plane.
To verify this, we use the asymptotic expansions of KiμðxÞ and IiμðxÞ for μ= − iν as
ν→∞: KνðlrÞ≈

ffiffiffiffiffiffiffiffiffiffi
π ̸2ν

p
2ν ̸elrð Þν, Iνðlr0Þ≈

ffiffiffiffiffiffiffiffiffiffi
π ̸2ν

p
2ν ̸er0lð Þν ̸2

ffiffiffi
2

p
. Then we can

obtain KνðlrÞIνðlr0Þ≈ π exp ð− ν ðln r− ln r0ÞÞ ̸4ν
ffiffiffi
2

p
. This implies that the inte-

grand is exponentially small in the lower half-plane for r> r0. Then, taking into
account the residues at points μ=±μn, we have

Pnðr,φ, lÞ= −
2q cosðφμnÞ cosðφ0μnÞ

φr
ReðKiμnðlrÞIiμnðlr0ÞÞ: ð2:18Þ

In the case r< r0, we represent function KiμðlrÞ in the form (2.16) and closing
the contour of integration in the lower half-plane we obtain expression (2.18),
where it is necessary to interchange r and r0. These expressions can be written as a
single expression if we introduce notations r− =minðr, r0Þ, r+ =maxðr, r0Þ

Pnðr,φ, lÞ= −
2q cosðφμnÞ cosðφ0μn)

φr
ReðKiμnðlr+ ÞIiμnðlr− ÞÞ. ð2:19Þ

In the case n=0, we similarly have

P0ðr,φ, lÞ= −
q
φr

Re ðK0ðlr+ ÞI0ðlr− ÞÞ: ð2:20Þ

Now we calculate the inverse Fourier transform (2.10) for the n-th mode ðn≥ 0Þ
with regard to the fact that the steady-state standing wave is an odd function of
variable x; as a result, we obtain pnðr,φ, xÞ= 1

π

R +∞
−∞ Pnðr,φ, lÞ cosðlxÞdl. This

integral can be expressed in the terms of the hypergeometric function
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pnðr,φ, xÞ= − qεn cosðφμnÞ cosðφ0μnÞffiffiffiffiffiffiffiffiffiffiffiπr r0φr
p ReZ,

Z = Γðiμn +1 ̸2Þ
Γðiμn +1Þ ðτ ̸2Þiμn +1 ̸2 F iμn +1 ̸2

2 , iμn +3 ̸2
2 , iμn +1, τ2

� �
,

ð2:21Þ

where ΓðzÞ is the gamma function, Fðα, β, γ, zÞ is the hypergeometric function,
τ=2r r0 ̸ðr2 + r20 + x2Þ, εn =1 ̸2 for n=0, and εn =1 for n≥ 1. The complete
solution is obtained as a sum of all modes: pðr,φ, xÞ= ∑∞

n=0
pnðr,φ, xÞ, where r

and φ are determined from (2.6), and r0, φ0, φr are determined from (2.9). We note
that small values of τ correspond to the far field distance from the perturbation
source, i.e., to the large values of r and x; a separate mode pnðr,φ, xÞ can be
approximated by the expansion of the hypergeometric function in a series for
0≤ z<1

Fðα, β, γ, zÞ=1+
αβ
γ
z+

αðα+1Þβðβ+1Þ
γðγ+1Þ2! z2 +⋯, ð2:22Þ

where, α= iμn +1 ̸2
2 , β= iμn +3 ̸2

2 , and γ= iμn +1. However, as the mode number n
increases at fixed z, it is required to take even greater number of terms in expansion
(2.22) (the number of terms is m≈ μnz), which hampers the calculation of wave
modes with large numbers. For the further summation of the series (2.22), we use
the WKB asymptotics of the hypergeometric function in (2.21)

Fðτ2Þ ≈ exp −
iμn
2

ln
τ2

4
+ ln

1+
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p
 ! !

̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
41− τ2

p
. ð2:23Þ

We use the asymptotics of the gamma function in (2.21) for large values of
μn:

Γði μn +1 ̸2Þ
Γði μn +1Þ ≈ expð− i π ̸4Þ ̸ ffiffiffiffiffiμnp

. Finally, we obtain the following expression for

the WKB asymptotics of a separate wave mode at large μn

pnðr,φ, xÞ≈−
q
ffiffiffi
τ

p
cosðφμnÞ cosðφ0μnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μnπ r r0

p
φr

cos
μn
2
ln
1+

ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p + π ̸4

 !
. ð2:24Þ

It is interesting to note that if we formally set μn →∞ in expansion (2.22), let
z→ 0 in the WKB asymptotics (2.23) for FðzÞ, and take into account that
zμn ≈Oð1Þ, then, in both cases, we obtain the same value equal to exp ð− izμn ̸4Þ.
Thus, expansion (2.22) and WKB asymptotics (2.23) are mutually consistent, i.e.,
there is a domain of z, μn, where these expressions coincide. It follows from (2.24)
that the amplitude of the n-th mode decreases as ððx2 + y2ÞnÞ− 1 ̸2 for large x, y.
Expanding the phase in (2.24) for small τ, we see that, for large y, the half-wave
length along axis y increases as πy ̸ μn, and along axis x, as πx ̸ 2μn. The numerical
calculations with the real parameters of the ocean show that the exact and
asymptotic solutions agree well, except for the immediate vicinity of the
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perturbation source, where the argument of the hypergeometric function tends to
unity, which follows from the construction of the asymptotic solution. We note that
expression (2.24) formally requires that μn →∞, but already for the first mode
n=1, asymptotic formula (2.24) gives a qualitatively true description of the exact
solutions. The asymptotics of the zero mode can be calculated from (2.21) by
setting μn =0. Then, taking into account that F 1

4 ,
3
4 , 1, τ

2
� �

= 2
π
ffiffiffiffiffiffiffi
1+ τ

p K 2τ
1+ τ

� �
,

where KðxÞ= R π ̸2
0 ð1− ðx sin φÞ2Þ− 1 ̸2dφ is an elliptic integral of the first kind, we

obtain the following expression

p0ðr,φ, xÞ≈−
q
ffiffiffi
τ

p

π
ffiffiffiffiffiffiffiffiffiffi
1+ τ

p ffiffiffiffiffiffiffiffiffiffi
2r r0

p
φr

K
2τ

1+ τ

� �
. ð2:25Þ

We use the asymptotics of KðxÞ as x→ 1 with the leading term
KðxÞ≈ ln 4− lnð1− xÞ ̸2 and finally obtain the expression for the asymptotics of
the zero mode

p0ðr,φ, xÞ≈−
q
ffiffiffi
τ

p

π
ffiffiffiffiffiffiffiffiffiffi
1+ τ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r r0φr

p ln
1− τ
1+ τ

� �
̸2

� �
: ð2:26Þ

We note that the exact and asymptotic solutions coincide completely near the
perturbation source. There is difference between them at far distances from the
source. This is related to the fact that the asymptotics of the elliptic integral works
well as the argument tends to unity. Nevertheless, in the far region, the asymptotics
qualitatively true describes the exact solution with an error at most equal to a few
percent. The obtained asymptotic representations of the solutions for separate wave
modes, including the zero mode, permit calculating the complete wave field. The
sum of asymptotics (2.24) of infinitely many wave modes ðn=1, 2, . . . .Þ is
expressed in terms of semi-logarithmic function

Li1 ̸2ðzÞ= ∑
∞

n=1

znffiffi
n

p , B±
± = expðiπð±φ±φ0 +AðτÞÞ ̸φrÞ, AðτÞ= 1

2 ln
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p

1+
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p ,

∑
∞

n=1
pnðr,φ, xÞ= −

q
ffiffiffi
τ

p
expð− iπ ̸4Þ

8π
ffiffiffi
4

p
1− τ2

ffiffiffiffiffiffi
rr0

p φr

ðLi1 ̸2ðB+
+ Þ+Li1 ̸2ðB+

− Þ+ Li1 ̸2ðB−
+ Þ+ Li1 ̸2ðB−

− ÞÞ.

ð2:27Þ

The complete wave field is the real part of expression (2.27) and the zero mode
(2.25). The semi-logarithmic function in (2.27) becomes infinite at the points, at
which the condition πð±φ±φ0 +AðτÞÞ ̸φ0 = 2πm,m=0, 1, 2, . . . is satisfied. The
locus of points ðx, y, zÞ satisfying this condition determines a system of rays if one
of the variables is fixed. On planes ðy, zÞ and ðx, zÞ, these solutions determine a pair
of ascending rays and a pair of descending rays, which are radiated from the source
and then reflect from the sloping ocean floor. Figure 2 presents the shadow picture
of the complete wave field (level lines) on plane ðy, zÞ for x=40 m; the other
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computational parameters are typical for the real ocean parameters: N =0.001 s− 1,
ω=0.004 s− 1, γ=0.2, c=0.44, ρ0 = 1000 kg ̸m− 3, Q=1600m3 ̸s, y0 = 500m,
z0 = − 4m.

These results clearly illustrate the ray structure of the constructed solutions, in
particular, the set of incident and reflected rays; moreover, the cotangent of the
angle between the incident ray and the vertical is approximately equal to 0.44,
which agrees well with the ray theory. Indeed, according to this theory, the
direction of group velocity Θ and the energy propagation direction are determined
by expression ctg2Θ= c2 =ω2 ̸ðN2 −ω2Þ2 [8, 10, 13, 15]. The solutions are sin-
gular on the rays, because the model of ideal medium is used. The main contri-
bution to the singularity is given by infinitely many short-wave modes with large
numbers. In reality, to obtain the complete wave field, it is necessary to consider
finitely many modes. This number is approximately determined by the Stokes
characteristic scale D=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν0 ̸N

p
, where ν0 is the kinematic viscosity and N is the

Brunt-Väisälä frequency. Obviously, the wave modes with large numbers whose
wave length is less that D do not contribute to the solution.

For comparison with the analytic results, in Fig. 3, we show the results of
numerical simulation of the complete system of hydrodynamic equations, which
describes the evolution of nonlinear wave perturbations over uneven ocean floor
(Bay of Biscay, more than 60 wave modes were summed) [9].

The results show that the ray structure of the solution (Fig. 2) is clearly identified
and, as the estimates show, the amplitude-phase structure of the wave fields is quite
well described by asymptotic formulas (2.27).

Figure 4 illustrates the results of full-scale measurements of the amplitude
structures of the tidal IGW in the same region of the World Ocean [9]. These
full-scale data show that the wave patterns with profound ray structure can actually
be observed in the real ocean, especially, when the IGW evolution over uneven
ocean floor is investigated. In particular, the analytic, numerical, and full-scale data

Fig. 2 Amplitude structure of IGW (pressure) in stratified ocean with non-uniform depth:
analytical results
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Fig. 3 Amplitude structure of IGW (velocity, m/s−1) in stratified ocean with non-uniform depth:
numerical simulation

Fig. 4 Amplitude structure of IGW (velocity, m/s−1) in stratified ocean with non-uniform depth:
measurements results
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show that the width of wave beams decreases as the shore is approached. Formally,
in the linear statement, the width of the reflected IGW beam can be arbitrarily small
for appropriate relations between the medium parameters (stratification, the ocean
floor slope angle); hence, a significant local intensification of waves occurs near the
ocean shore. It is clear that in the real ocean, the wave field energy remains finite in
such spatial domains due to the action of nonlinear mechanisms of dissipation and
turbulent mixing [1].

Conclusions

Thus, in the first section of the paper, a general method for calculating IGW fields in
the horizontally inhomogeneous ocean is outlined, namely,

• for an arbitrary distribution of the Brunt-Väisälä frequency, the basic vertical
spectral IGW problem is solved and the corresponding normalized eigenfunc-
tions and eigenvalues are determined;

• the characteristic systems with appropriate initial conditions are solved
numerically;

• after the characteristics (rays) are calculated, the eikonal (phase value) of the
phase functions is determined by numerical integration along these rays;

• the geometric divergence of the ray tubes is determined, for example, by
numerical differentiation of closely located characteristics;

• the IGW amplitude is calculated from the equations of the corresponding con-
servation laws along the rays (characteristics), in which the right parts of the
relations are determined by using the locality principle, i.e., it is assumed that
the ocean parameters remain horizontally unchanged over specific spatial
intervals. Thus, it is assumed that the ocean is horizontally homogeneous on
these space-time scales, and its density arbitrarily depends on the vertical
coordinate.

The solutions obtained in the second section of the paper are exact and exhibit
typical ray pattern of the IGW fields in the stratified ocean of variable depth
obtained without using the mathematical methods of geometrical optics.

The universal character of the proposed asymptotic methods of modeling IGW
fields in the ocean allows us to efficiently calculate the wave fields and, in addition,
analyze qualitatively the solutions. This opens wide opportunities for investigating
the wave fields in general, which is also important for formulating correct state-
ments of mathematical models of wave dynamics and for obtaining express eval-
uations in the field measurements of internal waves.
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