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Abstract. The problem of constructing uniform asymptotics of surface perturbations far 

fields  from a localized harmonic source in the flow of a heavy homogeneous fluid of infinite 

depth is considered. It is shown that the wave pattern of excited long-range fields is, for 

certain generation parameters, a system of hybrid wave perturbations which simultaneously 

exhibit the properties of the following two types: annular-type (transverse) and wedge-type 

(longitudinal) waves.  Specific features of the phase structure and wave fronts are studied. 

Uniform asymptotics of the solutions which describe the hybrid surface wave perturbations 

at a far distance from the harmonic source are constructed. 

1. Introduction 

The surface wave motions in the marine environment can either originate due to natural causes (wind 

waves, flow past underwater obstacles, bottom relief variations, density and flow fields) or be 

generated by the flow past natural obstacles (platforms, underwater pipelines, complex hydraulic 

facilities). The general system of hydrodynamic equations describing the surface perturbations is a 

rather complicated mathematical problem from the standpoint of proving the existence and uniqueness 

theorems for solutions in the corresponding function classes and from the computational standpoint. In 

the framework of the linear theory, the surface wave perturbations are analytically studied by integral 

representation methods and various asymptotic methods. The main results of solving the problems of 

generation of surface wave perturbations are represented in most general integral form, and to obtain 

the integral solutions, it is thus necessary to develop asymptotic methods for their investigation which 

admit a qualitative analysis and rapid estimations of the obtained solutions. Moreover, to analyze the 

data of the sea surface remote sensing, it is required to know the causes of various surface phenomena 

[1-7].  To obtain a detailed description of a wide class of physical phenomena related to the dynamics 

of surface perturbations in inhomogeneous and unsteady natural environments, it is necessary to have 

sufficiently developed  mathematical models. The fact that the structure of the heavy sea surface is 

three-dimensional is also significant, and there are currently no possibilities for large-scale 

computational experimental modeling of three-dimensional ocean flows at large times with a sufficient 

accuracy . But in several cases, the initial qualitative concept of the considered class of wave 

phenomena can be obtained by using simpler asymptotic models and analytic methods for studying 

them [8-12]. In this connection, it is necessary to mention the classical hydrodynamic problems of 

constructing asymptotic solutions which describe the evolution of surface perturbations excited by 

sources of various nature in heavy homogeneous liquids. The model solutions permit further obtaining 

representations of surface wave fields with regard to variability and unsteadiness of real natural 

environments. So several results of asymptotic analysis of linear problems describing different regions 
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of generation and propagation of surface perturbations also underlie the currently actively developing 

nonlinear theory of generation of ocean waves of extremely large amplitude, the so-called rogue 

waves (killer waves) [3,6] . The contemporary state of the art in the study of linear and nonlinear 

surface perturbations can be found in [7]. The problems of constructing uniform far field asymptotics 

of internal and surface perturbations from a moving source were considered in [2,5,13,14]. Therefore, 

it is interesting to consider more complicated regimes of surface wave generation due to the unsteady 

nature of the source of perturbations. The goal in this paper is to construct uniform far field 

asymptotics of surface perturbations generated in the flow of a heavy homogeneous liquid of infinite 

depth  around a localized harmonic source of perturbations.   

2. Main results and discussion 

We consider the problem of homogeneous flow of an infinitely deep heavy liquid past a harmonic 

perturbation source of intensity )tiexp(Qq  ; the liquid has velocity V at a far distance from the 

source. The source is located at depth h  with respect to the unperturbed free surface, i.e., at the point 

)h,,( 00 . To determine a physically realizable solution of the problem, it is necessary to replace the 

frequency  by   i  and then let   tend to zero in the obtained solution for the free surface 

elevation. Further, let  )t,z,y,x(  be the potential of velocity perturbations with respect to the 

velocity of the homogeneous flow. In the framework of the linear theory, to determine   , we have 

the problem [1,14] 
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where   is the three-dimensional Laplace operator and )x(  is the Dirac delta function. The free 

surface elevation )t,y,x(H  is determined from the Cauchy-Lagrange integral  
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We seek the solution of equations (1)-(2) in the form  

 
)z,y,x()t)i(iexp()t,z,y,x(  , )y,x()t)i(iexp()t,y,x(H  . 

 

In the dimensionless variables 2
  gxVx , 2

  gyVy , 2
  gzVz , 2

  ghVh , g/V , 

V/gtt  , g/V , Qg/V 
2 , Qg/V 

3 , we have the following problem for 

determining the functions )z,y,x(  , )y,x(  (the superscript «*» is further omitted): 
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We represent the functions )z,y,x( , )y,x(  as double Fourier integrals  
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Substituting expressions (5) in equation (3), we obtain the boundary-value problem  
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The solution of problem (7) in the domain 0 zh  has the form  
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The function ),(   is determined from equation (4) as 
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The zeros of the denominator in (8) determine the dispersion relation )(
/

)( 22 212
  which 

can be explicitly written as  

))((
/

)( 24 21
                                          (9) 

The set of frequencies 0  is divided by two characteristic values 2501 .  and 962 /  into 

three intervals. For 1 , the dispersion curve determined from equation (9) consists of three 

branches: one closed and two unclosed. Then the wave pattern is the sum of two ship (longitudinal) 

waves with half-opening angle of the wave wedge less than 2/  and annular (transverse) waves 

around the source. For 2 , the dispersion curve consists of two unclosed branches without 

extrema. In this case, the wave pattern is the sum of two ship waves with half-opening angle of the 

wave wedge less than 2/ . If 21  , then the dispersion curve consists of two unclosed 

curves one of which has two local extremes. One branch of the dispersion curve corresponds to usual 

ship waves with half-opening angle of the wave wedge less than 2/ , and the second branch, to ship 

waves with half-opening angle of the wave wedge greater than 2/  (the wave front is directed 

upstream away from the source). This system of hybrid waves simultaneously has characteristic 

features of both annular (transverse) and ship (longitudinal) waves. We further consider this case (

2550. ).   Figure 1 shows the dispersion curve branch (further denoted by )(1 ) which describes 

the hybrid waves. Figure 2 shows the branch of dispersion curve (9) (further denoted by )(2 ) which 

describes the ship waves. For 0  and  , we have 01  )(Im , and for  , we have 

02  )(Im . Then, calculating the inner integral in equation  (6) by closing the contour of 

integration in the variable   for 0y  in the lower half-plane (the poles )(1  and )( 2 ), and 

for 0y , in the upper half-plane (the poles  )( 1  and )(2 ), we obtain  

)y,x(I)y,x(I)y,x( 21   
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where )h)(exp()(E
23

  ,  C and D are the abscissas of the rightmost and leftmost points 

of the dispersion curves )(1 and )(2  in figures 1 and  2, respectively. Points A and G are points 

of inflection of the dispersion curves )(1  and )(2  in figures 1 and 2, respectively. The integrals 

)y,x(I2  with the corresponding dispersion dependence )(2 , which describe the usual ship waves, 

were studied in detail, for example, in [2,5,13,14]. A more complicated and yet unstudied wave pattern 

of amplitude-phase characteristics of hybrid surface wave perturbations is described by the integrals 

)y,x(I1 . We denote the phase by xy)(  1 . Then, using the phase stationary condition in the 

form  

y

x

d

)(d




1                                                              (10) 

we obtain the family of lines of constant phase with a parameter   (the subscript «1» is omitted)  
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Figure 1. Dispersion curve )(1   

 

 

 
 

Figure 2. Dispersion curve )(2  

 

Figure 3 presents the lines of equal phase for different values of   with step 2 . The part of the 

dispersion curve from point C  to the inflection point A  corresponds to annular (transverse) waves, 

and the set of corner cusps forms the wave front moving upstream, which is depicted in figure 3 by a 

dotted line. To determine the wave front, it is necessary to supplement equation (11) with the 

condition 0















 yxyx
 or, which is the same, 0

2

2






d

)(d
, where the abscissa A  of point 

A   is a solution of the equation under study. Then the equation for determining the wave front 

becomes y)(x A  and the corresponding half-opening angle of the wave wedge is equal to 

7105
0  . The part of the dispersion curve from point A  to point B  corresponds to the longitudinal 

crests of waves propagating from the front to infinity (depicted on the left in figure 3 by a dashed line). 

The dashed line in figure 3 corresponds to the crest of the wave with phase 0  and is described by 

the equation y)(x B  or yx 116
2
 , where B is a root of the equation )()(   
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whose solution is B , 116
2
 )( B . The part of the dispersion curve to the left of point 

B  corresponds to longitudinal crests of waves propagating from infinity to the origin (to the right of 

the dashed line in figure 3). In this figure, the phases   corresponding to the part of the dispersion 

curve to the right of point B  are equal to 43212 ,,,n,n  , and to the left of point B , to

110112  ,..,,n,n .  At infinity (for large values of x , y ), the equations of crests of longitudinal 

waves have the form  /kyx 2116
2 , where k  is integer, i.e., these crests are crests of a 

plane wave of length 24
2



. The wave length of annular (transverse waves) in the direction of 

the axis x  is equal to 1422  C/ , i.e., is approximately six times greater than the length of 

wedge-shaped (longitudinal) waves. 

  

 

 
 

 

Figure 3. Phase structure of surface 

gravity waves 

 

 
Figure 4. Surface gravity waves from moving 

unstable source 

 

The integral )y,x(I1  belongs to the class of integrals with two stationary points [15]. On the wave 

front (the dotted line in figure 3), the stationary points determined by equation. (10) merge. The 

uniform asymptotics )y,x(I1  for large value of y  is constructed similarly [13-14] and has the form 
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where )( 11  and )( 22  are roots of the equation 0 /),(S , 21  ,  )(Ai   is 

the Airy function, and )(iA   is the derivative of the Airy function [15]. To determine the free surface 

elevation, it is necessary to multiply expression for )y,x(I1   by )tiexp(   and take the real part of the 
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obtained result. Figure 4 presents the wave pattern of the free surface elevation for 10t  and 3h  

which is calculated  in dimensionless coordinates (near the origin, the integral )y,x(I1  was calculated 

numerically). For the parameter values which are typical of the ocean conditions 

sec/mVsec,/Q m 333
10  , the elevation amplitudes are of the order of 0.3 meter. Using the 

asymptotics of the Airy function and its derivative at a far distance from the front, we can obtain a 

non-uniform asymptotics for )y,x(I1  consisting of two terms. The first of these terms corresponding 

to the root 1  describes  wedge-shaped (longitudinal) waves, and the second term corresponding to the 

root 2  describes annular (transverse) waves. Thus, we have shown that, in certain generation 

regimes, the far fields of  surface perturbations from a non-stationary source localized in the flow of a 

heavy liquid of infinite depth form a hybrid system of waves of the following two types: annular 

(transverse) and wedge-shaped (longitudinal). The qualitative picture of wave fields at a far distance 

from a nonstationary source is significantly more complicated compared to the case of wave 

generation by a moving stationary source when the wave fronts come to a fixed observation point. The 

unsteadiness of the perturbation source amplitude results not only in the appearance of annular waves 

diverging on the liquid surface directly from the source but also in generation of hybrid surface 

perturbations propagating upstream from the source. The obtained asymptotics of surface wave 

perturbations far field allow one efficiently to calculate the basic amplitude-phase characteristics of 

wave fields and, in addition, qualitatively to analyze the obtained solutions, which is important in 

developing of well-posed mathematical models of wave dynamics of surface perturbations of the real 

natural environments. This opens wide opportunities for investigating the wave fields in general, 

which is also important for formulating correct statements of mathematical models of wave dynamics 

and for obtaining express evaluations in the surface field measurements in ocean.  The research 

was carried out in the framework of the Federal target program No. АААА-А17-117021310375-7. 
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