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Abstract—The problem of constructing internal gravity wave fields generated by an oscillating local-
ized point source of disturbances in a stratified medium with an average shear f low is considered.
A model distribution of shear f low over depth is considered, and an analytical solution of the problem
is obtained in the form of a characteristic Green function expressed in terms of modified Bessel func-
tions of imaginary index. Analytical expressions for the dispersion relations are obtained using Debye
asymptotics of the modified Bessel functions. Integral representations of solutions are constructed.
The wave characteristics of the excited fields are investigated depending on the basic parameters of the
used stratification models, shear f lows, and generation modes.
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INTRODUCTION

The interaction of excited waves with hydrodynamic f lows occupy a special place among the wide vari-
ety of wave process of various physical natures observed in the Earth’s ocean and atmosphere (see [1, 2]).
The motion of the stratified medium is a major factor influencing the dynamics of internal gravity waves
(IGW) in both natural conditions and engineering devices. In modern scientific research, asymptotic
methods for studying analytical wave generation models are used to analyze IGW dynamics in natural
stratified media with allowance for f lows. In the linear approximation, the approaches used to describe
wave patterns of excited IGW fields are based on representing wave fields by Fourier integrals and on their
asymptotic analysis [1–5]. In actual oceanic conditions, IGW propagation has to be considered against
the background of an average shear f low with a vertical velocity shear such that the velocity variations are
tens of cm/s or m/s, i.e., have the same order as the maximum IGW velocities. Such flows have to produce
a large effect on IGW propagation. Results of numerous studies concerning field measurements of IGW,
flows, and their interaction in various World ocean regions were presented in [6–8]. IGW generation by a
shear f low in the Kara Strait was considered in [9]. The f low was assumed to vary with the tidal frequency,
and IGW packets were generated at the tidal frequency due to the shear instability of the f low. For the
Strait of Gibraltar, similar results based on flow and IGW measurements with amplitudes of several tens
of meters were obtained in [10]. In modeling IGW generation, a steeply sloped transverse ridge situated in
a shear f low and a periodic tidal f low within a strait can be treated as a point source in the actual ocean
[6–8]. If the horizontal scale of f low variations is much greater than the IGW lengths and the scale of time
variability is much greater than the IGW periods, then a natural mathematical model is the case of hori-
zontally uniform steady shear f lows (see [1–4, 8, 11, 12]).

The goal of this work is to construct analytical solutions describing IGW fields generated by an oscil-
lating source of disturbances in a stratified medium with allowance for shear f lows.
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1. FORMULATION OF THE PROBLEM

Consider a layer of a vertically stratified medium of depth . Let  be the shear f low vector
at the level . Our analysis is based on the system of f luid dynamics equations linearized with respect to
the unperturbed state (see [1–4, 8, 12]):

where ( , , ) are the components of the perturbed velocity, ( , ) are the pressure and density dis-
turbances, and  is the unperturbed density of the medium. By using the Boussinesq approximation,
we can obtain the following equation for the vertical velocity [1, 4, 12]:

(1.1)

where  is the squared buoyancy frequency,  is the acceleration of gravity, and  is the dis-
tribution density of sources (if any).

The boundary conditions are specified in the form (the vertical  axis is directed upward)

(1.2)

The following assumptions are made below. Assume that the buoyancy frequency is a constant:
; the f low is one-dimensional: ; and  is a linear function of depth:

, where  and . This hydrology model is widely used in
actual oceanological computations and makes it possible to take into account the basic features of wave
dynamics with allowance for actual sea density variability observed in IGW field measurements in the
ocean; moreover, with the use of this hydrology, the problem can be investigated analytically [7, 8, 12].
The nonzero right-hand side of (1.1) is specified as

i.e., we consider the Green’s function for the oscillating point source of disturbances located at the
depth  (see [5, 11, 13]).

Then, in the dimensionless coordinates and variables

we pass from (1.1), (1.2) to the following system (the star is hereafter omitted):

(1.3)

(1.4)

The parameters are specified as . The function  is represented in
the form

A solution of problem (1.3), (1.4) is sought in the form of Fourier integrals:

(1.5)
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Then, to determine the function , we need to solve the boundary value problem

(1.6)

2. CONSTRUCTION OF ANALYTICAL SOLUTIONS
As two linearly independent solutions of problem (1.6) with a zero right-hand side, we use solutions

that are expressed in terms of a modified Bessel function with an imaginary index [14, 15]:

where the indices 1 and 2 correspond to plus and minus signs, respectively;  and .
The functions  and  are complex conjugate. Assume that the shear f low velocity is positive

over the entire depth of the stratified medium, i.e., . Additionally, the Miles stability
condition for the Richardson number is assumed to hold:

i.e.,  (see [1–4, 8]). It follows that  and the values of  are real. For real  and , the
function  oscillates. For imaginary , the function  tends to infinity for large  and nowhere
oscillates for  (see [14, 15]). For the values of  to be real for any , it is sufficient that ,
which coincides with the Miles condition for the Richardson number. The function

is real and satisfies the boundary condition at the origin. The function

is real and satisfies the boundary condition at . Then the characteristic Green function of Eq. (1.6)
has the form

(2.1)

where the Wronskian  is independent of the variable . Define

Then (2.1) can be represented in the form

Now we pass to integration with respect to  in (1.5). By applying the perturbation method, it can be
shown that the contour of integration with respect to  lies above the real axis in the complex  plane. The
amplitude of the integrand  is an analytic function of  outside its poles and the cut  made along
the real axis of  from  to , where  and  are the zeros of the function  at  and ,
respectively:  and . In this case,  and . The point  is at the
critical level if , where the corresponding point  if . Thus, the critical
values of  correspond to the points of  in the complex  plane. The zeros of the Wronskian  are the
roots of the equation . Then the dispersion relation can be represented in the form

(2.2)
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Fig. 1. Dispersion curves of the first three modes , numbered from bottom to top.
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Fig. 2. Dispersion curves of the first three modes , numbered from top to bottom.

D

v

�n2(v)

μ ν =2 ( ), 1,2,3n n
For the given hydrology model, a dispersion relation similar to (2.2) was obtained in [12]. It was noted
that the solution of this equation by analytical methods is of great difficulty. Therefore, a more compli-
cated task is to examine the analytical properties of the resulting dispersion equation, which provides an
opportunity of deriving asymptotic expressions for IGW fields in various wave generation modes. In what
follows, we study the basic features of solutions to the dispersion equation (2.2) and construct asymptotic
representations of its solution.

3. ANALYTICAL PROPERTIES OF DISPERSION RELATIONS

The roots of Eq. (2.2) make up two series of eigenvalues (dispersion curves)  and . As  grows,
 increase and tend to , while  decrease and tend to . The qualitative behavior of the disper-

sion curves in the two series is shown in Figs. 1 and 2. Note that, for  ( ), the eigenfunc-
tions  and  of problem (1.6) are equal to each other up to a constant factor. Therefore,
without loss of generality, we can assume that

From the solution of problem (1.6), we can conclude (at ) that the turning point with
respect to μ, which separates the wave and nonwave zones, is determined by the relation .
For a linear dependence , the turning point with respect to μ is determined by the relation

. Figure 3 shows the arrangement of the singular points determining the basic qualita-
tive features of the behavior of the dispersion curves in the plane of the variables ( ), where

. The turning points separating the values of  at which there are wave solutions are the
points A and E in Fig. 3. The corresponding values of  are  and . For  and

, there are no wave disturbances.

νμ 1( )n νμ 2( )n n
μ ν1( )n C μ ν2( )n D

μ = μ ν( )nj = 1,2j
ϕ μ ν1( , , )n z ϕ μ ν2( , , )n z

ϕ ν ν = ϕ ν ν = ϕ ν =μ μ1 2( ( ), , ) ( ( ), , ) ( , ) ( 1,2).n n njnj njz z z j

=( ) constM z
− =ω − μ 2 1( )M

( )M z
−ω − μ −π =2( ( )) 1M

Ψ μ,
Ψ = ω − μ ( )M z μ

μ μ = −2.67A μ = 8.95E μ > μE

μ < μA
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 7  2019



ANALYTICAL SOLUTIONS OF THE INTERNAL GRAVITY WAVE EQUATION 1125

Fig. 3. Singular points of solutions of the dispersion equation for (1)  and (2) .
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Now the basic analytical properties of the dispersion relations following from the solution of dispersion
equation (2.2) are studied in detail for various intervals of . For this purpose, we consider the following
equation, which is satisfied by the modified Bessel functions:

(3.1)

By making the substitution , Eq. (3.1) can be represented in the form

(3.2)

For , Eq. (3.2) simplifies to

(3.3)

Then, for oscillating solutions, the WKB asymptotic expansion of Eq. (3.3) in the case  has
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The first formula in (3.4) is continued analytically from the domain  to  through the upper
half-plane of the complex variable . As a result, we obtain

(3.5)

The Debye asymptotics of the modified Bessel functions  of imaginary index (for large values of
both index and argument) are obtained by replacing  in (3.4) and (3.5) with  (see [14, 15]):

(3.6)

(3.7)

In the case under consideration, for large values of  ( , large Richardson numbers), the func-
tions determining the properties of the dispersion relation (2.2) have the form

Therefore, for large , we can use the Debye asymptotics, since 
By virtue of the analytical properties of the modified Bessel functions, the left- and right-hand sides of

the dispersion equation (2.2) are complex conjugate; therefore, to solve this dispersion equation, it suf-
fices to set the imaginary part of the left-hand side of this equality to zero:

Consider a neighborhood of the point A (see Fig. 3). On the left-hand side of (2.2), the function
 is replaced by asymptotics (3.7), since  in the neighborhood of A,

while the function  is replaced by asymptotics (3.6), since  in the
neighborhood of A. Since , in what follows, the values of  in the asymptotics of modified Bessel
functions are always replaced by . Since the real part of  grows exponentially, while its
imaginary part decays exponentially with respect to , the contribution of this multiplier to the total phase
is much less than unity and the dispersion equation (2.2) simplifies to the equation
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Equality (3.8) contains a minus sign on the right-hand side, since . We introduce a small
quantity . For small , the solution of (3.8) can be represented in the form

(3.9)

By applying the perturbation method, the solution of Eq. (3.9) is sought in the form

(3.10)

Substituting (3.10) into relation (3.9) and collecting like powers of , we obtain

τ > λ τ < λ
τ

−
− λ τ ≈ τ − λ α π

 λ λ + λ − τα = − λ − τ − − π + πλ 
λ − λ − τ 

2 2 1/4

2 2
2 2

2 2

( ) ( ) exp( )/ 2 ,

ln /4 /2.
2

iI

i

− λ τ( )iI
τ λr

−
− λ +

−
− λ −

±

λ ≈ − λΛ πλ
λ ≈ − λΛ πλ

Λ = ± − − ± π >∓

2 1/4

2 1/4

2 2

Re ( ) ( 1) exp( )/ 2 ,

Im ( ) ( 1) exp( )/2 2 ,

1 arctg( 1) /2, 1,

i

i

I r r

I r r

r r r

−
− λ λ ≈ − Θ πλ

 + −Θ = − λ − − − π + πλ < < 
− − 

2 1/4

2
2

2

( ) (1 ) exp( )/ 2 ,

1 1 11 ln /4 /2, 0 1.
2 1 1

iI r r

ri r r
r

β β 1/4@

± β β ω − μ = −π( ( ( )), 0, .iI M z z

β β > 5 1/4.@

λ − λβ ω − μ −π β ω − μ =Im ( ( ( ))) ( ( (0))) 0.i iI M I M

λ β ω − μ −π( ( ( )))iI M ω − μ −π <( ) 1M
− λ β ω − μ( ( (0)))iI M ω − μ −π <( ) 1M

β 1/4@ λ
β − λ β ω − μ( ( (0)))iI M

μ

+ −βΩ − π = Ω = − −
− −

2
2

2

1 1 1sin( ( ) /4) 0, ( ) 1 ln ,
2 1 1

rr r r
r

βΩ ω − μ −π − π = −π =( ( )) /4 , 1,2,3, ...M n n

Ω <( ) 0r
ε > ε = − ω − μ −π0: 1 ( ( ))M ε

ν πε = + π −
μ

2/32 2 3 ( 1).
3 4

n
b

− −ν = + ν + ν +μ μ γσ 2/3 4/3
11 0 1( ) ... .nn n

ν

ω −= = π + π − −π =μ μ γσ−π μ

2
2/3 1

10 0 1
0

21 , (3 2 (3 /4 ( 1))/4) / ( ), .
( ) 3

n
n n

Ab n M
M

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 7  2019



ANALYTICAL SOLUTIONS OF THE INTERNAL GRAVITY WAVE EQUATION 1127

Fig. 4. Dispersion curve of the first mode  and its approximations.
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In what follows, we everywhere set . The corresponding numerical values are given by ,
, and . The constructed asymptotic expansions of the dispersion relation  for

large values of the parameter  determine the features of the excited wave fields for small .
Now we consider the interval of  between the points A and B (ignoring the neighborhood of B); the

corresponding values of μ are  and , respectively (Fig. 3). Then the dispersion
relation can also be represented in the form of (3.7), but the value of  is no longer close to
unity. However, Eq. (3.8) can easily be solved numerically for any , since the left-hand side of (3.8) is a
monotonic function of . From Eq. (3.8), we can obtain explicit analytical expressions for the dispersion
relation  in the form

If the interval of  between A and B is considered with allowance for the neighborhood of B, then we
need to take into account the phase addition of the multiplier . The addition to the
phase is taken into account only up to the first discontinuity of the function , i.e.,
until this function continuously reaches the value of . Then Eq. (3.8) becomes

(3.11)

Figure 4 shows the dispersion curve  obtained by numerically solving Eq. (2.2) (solid curve) and
its approximation (3.11) (dotted curve).

Consider the interval of  from  to the point  (the left boundary of the cut L in the complex plane
of ). In these values of , the arguments of the functions

lie in the interval (–1,1), so these functions can be replaced by asymptotics (3.6). Then the dispersion
equation (2.2) becomes

(3.12)

Figure 4 shows the dispersion curve  obtained by numerically solving Eq. (2.2) (solid curve) and
its approximation calculated using formula (3.12) (dashed curve). From Eq. (3.12), we can also obtain an
explicit analytical representation of , namely,

The interval of  from  (the right boundary of the cut L in the complex plane of ) to  (Fig. 3)
corresponds to a family of dispersion curves . In this case, the multipliers in Eq. (2.2) do not make
contributions to the phase on the entire interval ( , ); therefore, Eq. (3.8) has a solution for all

. Figure 5 displays the dispersion curve  obtained by numerically solving Eq. (2.2) (solid
curve) and its approximation (3.8) (dashed curve).
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Fig. 5. Dispersion curve of the first mode  and its approximation.
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4. ANALYTICAL REPRESENTATIONS OF WAVE FIELDS
To compute the integral with respect to  in (1.5), we close the contour of integration in the lower half-

plane and take into account the integral over the cut  and the sum of the residues at the poles :

where  is the integral along the bank of . It can be shown that the contribution made by the inte-
gral along the cut bank is small as compared with the contribution of the poles , so the integral  is
not considered in what follows. Thus, taking into account the harmonious dependence on time, the IGW
field  can be represented in the form of a sum of modes of two types:

(4.1)

Far away from the source of disturbances, for large , integrals (4.1) in the approximation of the sta-
tionary phase method have the form (see [5, 13])
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Fig. 6. Phase structure of the wave field for the dispersion curve .
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mation (4.2) (nonuniform asymptotics) is applicable only within the wave wedges. The asymptotic expan-
sion describing the IGW wave fields away from the source of disturbances is applicable both near and far
from the wave wedges (uniform asymptotics) and is expressed in terms of the Airy function and its deriv-
ative [5, 13].

Let us describe the qualitative pattern of the excited IGW fields corresponding to two types of disper-
sion curves. Dispersion curves of the first type intersect the horizontal axis, the semi-apex angle of a wave
wedge is less than , and the wave pattern consists of a set of wedge-shaped and transverse waves. The
corresponding phase structure consists of curved triangles embedded in the wave wedges with their vertex
lying nearer to the origin. Since the dispersion curves of the second type are always located above the hor-
izontal axis, they are associated with a system of wedge-shaped and longitudinal waves of simpler phase
structure. The semi-apex angle for second-type waves is always less than that for first-type waves. The
main contribution to the total IGW field is made by the first-type wave modes, while the amplitudes of
the second-type waves are only a fraction of the first-type wave amplitudes. Figure 6 presents the com-
puted phase structure of the excited IGW fields for the upper branch of the first-type dispersion curve

. The dashed lines in the figure are wavefronts with the semi-apex angle  and the solid curves are
lines of equal phase (determined parametrically by the parameter ):

CONCLUSIONS
The problem of internal gravity wave fields generated by an oscillating localized point source of distur-

bances in a stratified medium with an average shear f low was considered. An analytical solution of the
problem was obtained using a constant buoyancy frequency distribution and a linear dependence of the
shear f low on depth. By using the chosen hydrology model, analytical expressions expressed in terms of
modified Bessel functions of imaginary index were derived for the dispersion relation. Under the Miles
stability condition for large Richardson numbers, analytical solutions were using the Debye asymptotics
of modified Bessel functions of imaginary index. The properties of the dispersion equation were examined
in detail, and the basic analytical properties of the dispersion curves were studied. Integral representations
of solutions for far wave fields were constructed in the approximation of a stationary phase. The phase pat-
terns of the excited IGW fields were numerically computed for the given model of wave generation.
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