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Abstract 

For the purpose of stratified medium wave dynamics mathematic modeling nonlocal 
absorbing boundary conditions are laid down taking account of two essential physical 
circumstances: at large distances from perturbation sources linear theory is correct and no other 
wave perturbation sources are out of stratified medium mixing zone. These boundary conditions 
use makes it possible to correctly describe diverging internal gravity waves excited by stratified 
mixed medium region. 

Introduction 

As a rule in perturbation nonlocal source immediate neighborhood, for 
example near turbulent wakes arising from said sources movement, strong 
mixing zones, vertical formations hydrodynamics equations are essentially 
nonlinear and it is necessary to recourse to tedious numerical calculations to 
describe a near field. On the other hand for calculation of internal gravity 
waves long-distance propagation direct numerical calculations (for example 
by the finite-difference method) are unfeasible. However in the far zone 
interesting fields are relatively small-amplitude and usually it is possible to 
describe them with linear equations. Besides it is considered to be universally 
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accepted that effects of viscosity, medium rotation and its compressibility are 
negligible and do not affect on internal gravity far-distance propagation. 
Therefore the far zone wave field as it is shown in [3-7], is described by 
relatively simple analytical formulae. Herewith initial or boundary conditions 
should be defined from either far field numerical calculation results with 
account of hydrodynamics nonlinear equations or from extremely evaluating 
(semiempirical) considering making it possible to approximate near field with 
some system of perturbation moving sources [3-7]. 

We shall assume, that perturbation source moves at a constant speed V 
along the axis x in negative direction ( yx,  are horizontal coordinates, z is 
vertical ).one  With neglect of nonstationary processes related for example to 
vortex periodic excitation while a source streaming in transient period, 
related to perturbation source motion start, the required field will be the 
function of variables .,, zyVtx +=ξ  It is possible to set the boundary 
problem for far field for example in the following manner. 

The problem A. The planes 0yy ±=  are taken, the perturbation source 
moves in the “passage” formed by these plane. With 0yy <  the field is 
numerically calculated, from this solution with 0yy >  (for definiteness) 
velocity ( )WUU ,, 21  and elevation ξ, component values are determined as 
functions of Vtx +=ξ  and z. Of these four functions only two appear to be 
independent ones (for example elevation ς and plane 0yy =  normal velocity 

2U  component). No-source in the region 0yy >  condition imposes nonlocal 
constraint between these functions, it is sufficient to only set elevation ς (or 
velocity 2U  component), and one boundary condition appears to be sufficient 
to find the field in the region .0yy >  

The problem B. The plane 0ξ=+=ξ Vtx  following the perturbation 
source is taken, where 0ξ  is so large, that all effects of nonlinearity, viscosity 
and etc. are negligible with ,0ξ>ξ  i.e., with 0ξ>ξ  the required field would 
be described by linear equations and would have no sources. The wave field 
with 0ξ<ξ  is calculated by numerical methods, the field with 0ξ>ξ  is 
calculated in linear approximation of boundary values on the plane .0ξ=ξ  
No-source condition with 0ξ>ξ  imposes well defined nonlocal constraint on 
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four functions describing the field (velocity three components and elevation), 
the required field in the region 0ξ>ξ  is constructed by three set independent 
functions ( examplefor  by elevation and velocity components ( )WU ,2  in the 
plane ).0ξ=ξ  

With far field definition problem converting to problems A and B near 
field calculation is the necessary stage– up to now unsolved in corpore 
problem, although it is possible to expect, that numerical methods development 
will make it possible in the foreseeable future to obtain its solution. It is 
possible to consider the third approach, which make it possible to evaluate 
internal gravity waves amplitude and phase structure. 

The problem C. The near field is approximated by some source system, 
where the far field is defined as the field excited by these sources. The 
internal gravity waves arising with the perturbation source streaming are 
approximated as the field excited by horizontally oriented mass dipole or 
sources and drains combination, where distribution of these sources is taken 
from the problem of this source streaming by homogeneous fluid flow. The 
field excited by the turbulent wake, string mixing zones, vortex formations is 
approximated by the system of trajectory distributed sourced on account of 
results of numerical calculation of spatial and energy characteristics of model 
two-dimensional problem describing the near field in exact setting. To simplest 
approximation it can believed that there’s medium continuous mixing and 
internal gravity waves are excited with this mixed zone collapse; such field 
can be approximated by trajectory distributed vertically oriented mass dipole 
sources as fluid mixing resolves itself to mass part transfer from the mixed 
spot lower part to the upper part [9-13]. 

It is obvious, that the C problem solution is simpler than those of A and B. 

Internal gravity waves propagation and excitation linear theory appears 
to be use efficient and with near field numerical calculation. Let us assume, 
that with 00 =ξ=ξ  (for definiteness) some medium perturbation localized 
near axis ξ and not supposed to be small is set, so that this perturbation later 
evolution is to be calculated numerically. For that purpose it is necessary to 
select the region ,, NzMy <<  and at this rectangle borders it is 
necessary to lay down some boundary conditions, for example no-fluid-loss 
condition assuming 0=V  with My ±=  and 0=W  with .Nz ±=  However 



V. V. BULATOV and Y. V. VLADIMIROV 4

when excited internal gravity waves reach with some maxξ=ξ  designed 
rectangle borders, extraneous these borders-reflected waves origin absent in 
the real problem. Therefore numerical method solution can be calculated only 
with .maxξ<ξ  To damp reflected waves it is possible to lay down absorbing 
conditions at the borders, however such conditions are complex and are of 
approximate nature. The second solution continuation way is account of the 
circumstance waves approaching the border are relatively small in amplitude 
and are of linear nature. Therefore it is reasonable to separate field linear 
part. Let us consider the value max1 ξ<ξ  and let ( ) 1121 ,,, ηWUU  are the 
velocity component and wave field elevation values with .1ξ=ξ  Let us 
assume these values as the initial data for linear equations and let us find 
corresponding solution ( ) .,,, 1121

∗∗∗∗ ηWUU  Let us later set up equations for the 

difference ( ) ,,,, 11112111
∗∗∗∗ η−η=η∆−−−=∆ NNNN WWUUUUU  where ( ,1

NU  

) NNN WU 112 ,, η  is the solution of the initial nonlinear problem. This difference 
will be different from zero only in small neighborhood of the axis ξ, B in 
which calculated wave field is different form the linear one. Therefore it is 
possible to continue the solution η∆∆ ,U  with numerical methods to the 
region .maxξ>ξ  Whenever the function η∆∆ ,U  calculation region reaches 
the rectangle borders, it is possible again to distinguish the linear part and to 
continue calculations. 

As internal gravity waves excitement, propagation in actual practice 
represents essentially nonlinear phenomenon, with some reasonable 
assumptions it is possible to linearize internal waves generation and 
propagation equations [9-13]. The present work studies linear approximations 
for internal gravity waves at large distances of an excitement source, in case 
when the source is substituted with a model. Therefore is interesting for 
example combination of model representations and semiempirical and possibly 
even experimental data. As internal waves equation solutions for a point 
excitement source were studied more closely in the first chapter, conceptually 
with knowledge of such solution it is possible to write the solution for the 
source vertically and horizontally smeared out, i.e., already having finite 
length and this again represent model reasoning. 

The following approach is also possible. Let us assume, that there’s an 
excitement source, which leaves turbulence wake (vortex formation region, 
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mixing zone) generating internal waves in a certain manner [9-13]. Let us 
establish imaginary plane ( ),0xx =  parallel, assume, to excitement source 
motion trajectory and let us measure all wanted characteristics on this plane 
(Figure 1). Then it is possible to solve the internal gravity waves propagation 
in linear approximation problem using plane data as initial ones. This way 
looks reasonable as good results of linear theory far from turbulence, mixing 
regions, i.e., from various physical nature excitement nonlocal sources should 
be expected. These nonlocal boundary data on this plane can be defined both 
experimentally and as a result of numerical calculations. In the same way in 
initial conditions much real information can be set, on the basis of which 
internal gravity waves far from nonlinearity region linear theory with 0xx >  
should give satisfying results. 

For the purpose of solving the problem of mathematic modeling of 
internal gravity waves generation by the region of partially mixed stratified 
medium it is possible to quote absorbing nonlocal boundary conditions, which 
take account of two essential from physical standpoint circumstances: first– 
linear theory is correct at large distances of perturbation sources; second– there 
are no other perturbation sources out mixing zone. Therefore use of these 
boundary conditions make it possible to describe diverging linear internal 
gravity waves excited by the region of mixed stratified medium (Figure 1). 

Nonlocal Absorbing Boundary Conditions 

Numerical algorithms for calculation of linear internal gravity waves 
far from excitement sources explicitly use or should use the results of 
hydrodynamics nonlinear problems exact numerical calculations as the 
formulation basis of for example physically correct boundary conditions [9-13]. 
However associated with this it is necessary to take account of the fact that 
with numerical solution of hydrodynamic nonlinear basic problems the topic 
of correct edge boundary conditions laying-down arises. One can assume, that 
at certain distances from excitement all sources it is admissible to linearize 
nonlinear problem, thus a possibility appears to use the results of internal 
gravity waves linear theory and with use of available exact analytical solutions 
to quote physically correct boundary conditions. 

Let us for example consider the topic of numerical modeling of two-
dimensional flow arising as a result of incompletely mixed fluid in stably 
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vertically stratified medium region collapse (Figure 1). At large distances 
from the mixing region it is possible to use linear approximation and also the 
essential later on fact, that out of mixed fluid zone there are no excitement 
other sources. Use of these physically justified conditions imposes well-defined 
constraint on stream function and its derivatives at the exact numerical 
calculations region borders, which should be used for formulation of this 
problem numerical solution boundary conditions [9-13]. 

The numerical model of two-dimensional flow arising from the incompletely 
mixed fluid region collapse in vertically stably stratified medium is described 
by the Euler equation in Boussinesq approximation [9, 13] 
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where U, V are the velocity horizontal and vertical components accordingly, ρ 
is density perturbation, ( )z0ρ  is quiescent fluid density [9, 13]. By entering 

stream function xVzU
∂
Ψ∂−=

∂
Ψ∂= ,  ( )streamlineconst=Ψ  and vorticity 
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Linearized combined equations system is given by 
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With linearization and this system obtaining the second term of the 
equation 
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was omitted. Let us evaluate the error of this approximation use, i.e., the 
ration between the second summand and the first one. 
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Let 

( )( ).exp0 tzkxkiVV zx φ−+=  

Then from the system (1) third equation we have 

( ( )) .exp0 xzxz ktzkxkikVU φ−+−=  

Later it is possible to obtain the following relations 
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V
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As a result the formula (2A) can be given as 
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It is obvious that for real oceanic scales ( ( ) )212 10,10 −−− ≈≈ cmgczN  
this expression is much less than unity [10-12]. 

Let us show, that the stream function Ψ, defined by this linearized 
combined equations satisfies the internal gravity linear waves equation. 
Indeed let us differentiate the system (2) first equation with respect to time 
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where ( ) ( ) zd
d
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0
2 ρ
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−=  is the Brunt-Vaisala frequency, which is the 

main parameter defining internal gravity waves characteristics [10-11]. 
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we have 
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Let us consider the function 
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Let us differentiate the equation (4) with respect to time 
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i.e., streamline function Ψ and the function 
( )zN 2
ω=Ω  (in case ( ) =zN 2  

const and vorticity )ω  itself satisfy the internal gravity waves main equation 
[3-7, 11]. As a rule the condition 0=Ψ  is used as boundary conditions. 
However as it will be shown below, if the streamline function satisfies 
internal gravity waves equation, there is well-defined dependence between 

the functions Ψ and x∂
Ψ∂  which should be used as corresponding boundary 

conditions for correct numerical solution of the stratified mediums dynamics 
problems. 

Formulation of Nonlocal Boundary Condition 
for Finite Stratified Medium 

Let us consider the case ( ) const.=zN  The Green’s function G for 

internal gravity waves in stratified medium Hz <<0  finite layer is defined 
from the equation [3-7, 11] 
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Boundary and initial conditions for the function G, definition are of the 
form 
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The Green’s function G, satisfying these conditions, is constructed in [3-7] 
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To prove the formula (6) let us differentiate t function ( )txzG ,,  and let 
us substitute ,0=t  then we obtain 
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Let us later consider the integral (7) on complex plane u 
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By closing contour in the upper half-plane and with residue in the simple 
pole iu =  it is possible to obtain the formula (6).  
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Let us write the Green’s formula for internal gravity waves equation 
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We assume, that in the region 0xx >  later without loss of generality 
( )00 ≡x  there are no sources, then it is obvious, that the Green’s function G 
satisfies the equation 
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As the streamline function Ψ satisfies the internal gravity waves 
equation (3), then with 0=x  there is single-valued connection between the 

streamline function Ψ and its derivative ,x∂
Ψ∂  and it is no longer possible to 
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prescribe arbitrarily these functions values. Therefore with numerical solution 
of the problem (2) it is necessary to use the following integral relation as 
boundary conditions 
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0
1002

2
2cos1

cos1ln8
1  

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

ττ⋅θ+θ−δ+ττδ⋅′+π−
′−π−= ∫∫

tt
dJttJttJtdJdt

td
zz
zz

0
0

0
100 2cos1

cos1ln8
1  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ,cos1

cos1ln8
1

0
010

⎭
⎬
⎫

⎩
⎨
⎧

ττ⋅θ+θ−δ⋅′+π−
′−π−= ∫

t
dJttJttJtzz

zz  

where ( ) ( )tJJ 10 ,τ  is Bessel’s function [1, 2, 8]. Thus the expression (10) can 
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be given as 

( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) ( ) .cos1

cos1ln8
1,

0
011

⎭
⎬
⎫

⎩
⎨
⎧

ττ⋅θ+θ−δ⋅′+π−
′−π−= ∫

t
dJttJttzz

zztzF  

Let us find the expression for the function ( )tzF ,2  

( ) 212 , IItzF +=  (11) 

( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) duzzxuzzxu

zzzz
u

xuutI ∫
∞

∞− ⎥⎦
⎤

⎢⎣
⎡

′−π−π′+π−π
′−π−′+π

+

π
π

δ= coscoscoscos
coscos

1
sin

8 21  

( )
( )

( )∫
∞

∞− +
+

π

π
θ= 232

2
2

1
1

sinsin

8 u
u

tuxu
tI  

( )( ) ( )
( ) ( )( ) ( ) ( )( ) .coscoscoscos

coscos duzzxuzzxu
zzzz

⎥⎦
⎤

⎢⎣
⎡

′−π−π′+π−π
′−π−′+π×  

The integrals (11) are understood in terms of the principal value around 
the poles on complex plane real axis u. Then for calculation of the expression 

1I  we close the contour in the upper half-plane and using the Jordan lemma 
[2] with residue in the simple pole ,iu =  it is possible to obtain 

( )
( ) ( ) .coscos

1
cos

1
81 ⎥⎦

⎤
⎢⎣
⎡

′−π−π
−′−π−π

π−⋅δ= zzxzzxchxshtI  

With 0→x  and 0→′− zz  we have 

( )
( )

( ) ( )
44 221

zzt
zzx

xtI ′−δδ→
′−+π

δ=  

The summand 0: 22 →II  should now be studied with .,0 1zzx ≠→   

Let us consider behavior 2I  with 0,0 →′−→ zzx  and small t. At the first 

approximation the summand 2I  can be given as 

( )
( ) ( ) ( )

.
1coscos

1
8 22

2
2 ∫

∞

∞− +
⋅′−π−π

−⋅θ≈
u
duu

zzxu
txtI  (12) 

The integral (12) is still understood in terms of the principle value. On 
the complex plane u let us close the contour in the upper half-plane and let 
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us make residue at the point ,iu =  which is the pole, but already of quadric 
surface. As a result we obtain 

( )
( ) ( ( ) )

.2
8 222

3

222 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′−+
−

′−+π
θ−≈

zzx
x

zzx
xttI  

As 

( )∫
∞

∞−
π=

′−+ 22 zzx
xdx  

( ( ) )∫
∞

∞−

π=
′−+ 2222

3

zzx
x  

at the first approximation it is possible to obtain 

( ) ( ( ) ( )) .082 ≈′−δ−′−δθ−≈ zzzzttI  

It is possible to show, that the second and other higher approximations of 
the summand 2I  are equal to zero, however we do not cite the proof because 

of its awkwardness. 

As a result we have 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧

ττ⋅θ+θ−δ⋅′+π−
′−π−= ∫

t
dJttJttzz

zztzF
0

011 cos1
cos1ln8

1,  

( ) ( ) ( ) .04,2 +
′−δδ= zzttzF  

Formulation of Nonlocal Boundary Condition for Stratified Infinite 
Depth Medium 

Plane 0=x  bounded half-space is considered with Brunt-Vaisala 
frequency constant distribution ( ) const.=zN  In the half-space 0≥x  the 

streamline function Ψ satisfies linear internal gravity waves equation [3-7, 11] 

( ) .02

2
2

2

2
=

∂

Ψ∂+Ψ∆
∂

∂

x
zN

t
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In the half-space with ( ) const=zN  it is possible to write definite 
representation for the Green’s function Γ satisfying the equation 

( ) ( ) ( ) ( )tzzx
x

zN
t

δ−δδ=
∂

Γ∂+Γ∆
∂

∂
02

2
2

2

2
 

which takes the form [3-7] 

( ) ( ) ( ) .lnsin
0 22

222
0

22

∫ ω
ω−ω

ω−−ω−ω
θ=Γ

N
d

N

xzzNtt  

Let us later write the Green’s formula for internal gravity waves 
equation and as a result we obtain 

∫ ∫ ∫
∞

∞−

∞ ∞

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

Ψ∂+Ψ∆
∂

∂Γ
0 2

2
2

2

2

x
N

t
dzdxdt  

∫ ∫ ∫
∞

∞−

∞ ∞

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

Γ∂+Γ∆
∂

∂Ψ=
0 2

2
2

2

2

x
N

t
dzdxdt  

.0
0

2
2

2

2

2
2 =

⎭
⎬
⎫

⎩
⎨
⎧

∂
Γ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂Ψ−
∂
Ψ∂Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂+−
=

∞

∞−

∞

∞−∫ ∫
x

xN
txt

Ndzdt  

In this Green’s formula the limits of integration with respect to xtz ,,  
are infinite, herewith we consider, that at infinity all functions go to zero. 
With ∞−→t  one integrand function goes to zero, with ∞+→t - another, but 
no two simultaneously. Then with non-zero integrating only plane 0=x  
contribution remains. As the functions ΓΨ,  satisfy internal gravity waves 
equation 

0
0

2
2

2

2

2
2 =

⎭
⎬
⎫

⎩
⎨
⎧

∂
Γ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂Ψ−
∂
Ψ∂Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂+
=

∞

∞−

∞

∞−∫ ∫
x

xN
txt

Ndzdt  

or 

.021 =⎟
⎠
⎞⎜

⎝
⎛ Ψ−

∂
Ψ∂⋅∫ ∫

∞

∞−

∞

∞−
dtFxFdz  (13) 

( )
0

2
2

2
1 ,

=

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂=
x

N
t

tzF  
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( ) .,
0

2
2

2
2

=
∂
Γ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂=
x

xN
t

tzF  

Let us calculate these two functions 

( ) .,
0

2
2

2
1

=

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂=
x

N
t

tzF  

We have 

( ) ( ) ( )∫ ω
ω−

ω−−ω−
δ=Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂ N

d
N

xzzNtN
t 0 22

222
0

22
2

2

2 ln  

( ) ( ) ( )∫ ωω−−ω−
ω

ω−ωθ+
N

dxzzNNtt
0

222
0

22
22

lnsin  

.21 II +≡  

Let us consider the summand 1I  

( ) ( ) ( ) .ln
0 22

2
0

22

01 ∫ ω
ω−

−ω−
δ==

N
x d

N

zzNtI  

Using substitution: ,
12 +κ

κ=ω N  we obtain 

( )
κ

+κ
=ω

+κ
=ω− dNdNN 232

2

2

2
22

1
,

1
 

( ) ( ( ) ) ( )∫
∞

= κ
+κ

+κ−−
δ=

0 2

22
0

2

01 1
1lnln dzzNtI x  

( ( ) )∫
∞

κ
+κ

−
=

0 2

2
0

2

1
ln dzzN  

( ( ) ) ( )∫
∞

κ
+κ

+κπ⋅−=
0 2

22
0

2
1

1ln
2ln dzzN  

( ) ( ) .2ln
1

ln
1

ln
2
1

22 π=κ
+κ

−κ+
+κ

+κ= ∫
∞

∞−
dii  
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So 

( ) .2ln 0
01

zzNtI x
−

πδ==  

Let us now consider the summand 1I  

( ) ( )∫ ω−
ω

ω−ωθ==

N
x dzzNttI

0
2

0
22

02 lnsin  

( ) .lnsin
0

21
22

22

∫ +≡ωω−
ω

ω−ωθ+
N

BBdNNtt  

Let us study the integral ,1B  having made substitution ϕ=ω sinN  

( ) ( ) ( )∫
π

ϕ−
ϕ
ϕϕθ=

2

0
2

02

2
1 ln

sin
cossinsin dzzNtNtB  

( ) ( ) ( )
⎩
⎨
⎧

ϕ
ϕ

ϕ−θ= ∫
π 2

0
2

0 sin
sinsinln dNtzzNt  

( )
⎭
⎬
⎫

ϕϕϕ− ∫
π 2

0
sinsinsin dNt  

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ π−ττπ−θ= ∫

t
NtJdNJNzzNt

0
10

2
0 22ln  

( ) ( ) ( ) .ln
0

100
⎭
⎬
⎫

⎩
⎨
⎧

−ττ−πθ= ∫
t

NtJdNJNzzNt  

The integral 2B  ( )ϕ=ω sinonsubstitutiafter N  is 

( ) ( ) .cosln
sin
cossinsin

2

0
222

2

2
2 ∫

π
ϕϕ

ϕ
ϕϕωθ= dNNttNtB  

Later it is possible to obtain 

212 BBI +=  

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

−ττ−πθ= ∫
t

NtJdNJNzzNNtB
0

1001 ln2  
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( ) ( )∫
π

ϕϕ
ϕ
ϕϕθ=

2

0
2

2
2 coslnsin

cossinsin dNtNtB  

( ) ( ) ( )∫
π

θ−ϕ
ϕ
ϕϕθ=

2

0

2

sin
coslnsinsin NtdNtNt  

( ) ( )∫
π

ϕϕϕϕ×
2

0
2coslnsinsinsin dNt  

.21 AA +≡  

To express the summands ,21 AA /  let us first consider the integral 

( ) ( ) ( ) ( )∫
π

ϕϕϕθ=τ
2

0
2coslnsincos dNtNtI  

( ) ( ) ( ) .coslnsincos
2

0
2∫

π
ϕϕϕτθ= dNt  

To calculate it let us consider the following representation of the Bessel’s 
function (Poisson integral representation) [1, 2, 8] 

( ) ( ) ,cossincos

2
1

22 2

0
2∫

π
ϕϕϕτ

⎟
⎠
⎞⎜

⎝
⎛ +Γπ

⎟
⎠
⎞⎜

⎝
⎛

=τ d
v

x

J v

v

v  

where ( )zΓ  is gamma function [1, 2, 8], or 

( )
( ) .cossincos

2

2
1

2
2

0
2∫

π
ϕϕϕτ=

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ +Γτ

π d
x

vJ
v

v

v
 

Let us differentiate both members of the last-mentioned equation in 
respect to v and let us assume .0=v  Then we obtain 

( ) ( )
( )

.

2

2
1

2coslnsincos

0

2

0
2

=

π

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ +Γτ

π=ϕϕϕτ∫
v

v

v

x

vJ

dv
dd  
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To calculate the right-hand member let us use the following relations 
[1, 2, 8] 

( ) ( ),2 0
0

xYdv
dJ

v
v π=
τ

=
 

( ),4ln2
1,2

1 −−π=⎟
⎠
⎞⎜

⎝
⎛Γ′π=⎟

⎠
⎞⎜

⎝
⎛Γ C  

where ( )xY0  is a zeroth-order Neumann function, 577.0≈C  is the Euler’s 
constant [1, 2, 8]. Finally we obtain 

( ) ( ) ( ( ) ( ) ( ))2
00 4ln24 tNCNtJNtYNtI +−ππθ=τ  

( ) ( )∫
τ

=τ
0

1 duuIA  

( ) ( ) ( ) ( ) ( ) ( ) ( ) .4ln22
4

22
11

0
2 ⎟

⎠
⎞

⎜
⎝
⎛ +−π+πθ−=

τ
τ−=τ NtCNtJNtYNt

NtJNtd
dIA  

As a result we have 

( )
0

2
2

2
1 ,

=

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂=

x
N

t
tzF  

( ) ( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
τ−−πθ+

−
πδ= ∫

τ

0
100

0 ln22ln JduuJzzNNtzzNt  

( ) ( ) ( )( )∫
τ

⎟
⎠
⎞⎜

⎝
⎛ +−ππ+

0
00 2ln22 duuCuJuY  

( ) ( ) ( ) ( )( ) ,2ln22 11
0

⎭
⎬
⎫
⎟
⎠
⎞

⎜
⎝
⎛ τ+τ−τπ+

τ
τπ+ CJYJ  

where CtN ,=τ  is the Euler’s constant, ( ) ( )uJuJ 10 ,  are the Bessel’s zeroth- 
and first-order functions, ( ) ( )uJuY 10 ,  are the Neumann zeroth- and first-
order functions accordingly [1, 2, 8]. 

Let us show later, that the function ( )
0

2
2

2
2 ,

=
∂
Γ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂=

x
xN

t
tzF  is 

( ) ( ).0
2

0

2
2

2
zztxN

t x
−δδπ=

∂
Γ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

→

 



V. V. BULATOV and Y. V. VLADIMIROV 20

Indeed 

0

2
2

2

→
∂
Γ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

x
xN

t
 

( ) ( )
(( ) ( ) ( ) )

ω
−ω−−ω−ω−

−ω−
δ= ∫ d

xxzzNN

xxt
N

0 2
0

22
0

2222
0

22  

( ) ( )
(( ) ( ) ( ) )

ω
−ω−−ω−

−ω−
ω

ω−ωθ+ ∫ d
xxzzN

xxNtt
N

0 2
0

22
0

22
0

222 2sin  

( ) ( ) .21 ItIt θ+δ≡  

Let us consider the summand .1I  Let us substitute: ,
12 +κ

κ=ω N  as a 

result we obtain 

( )
( ) (( ) ( ) )

,
1 2

0
22

0
2

0
2

1 ∫
∞

∞−
κ

−κ−−+κ

−κ
−= d

xxzz
xxI  

where the integral is understood in term of the principle value. By closing the 
contour in the upper half-plane and defining residue at the point ,ik =  we 
obtain 

( )
( ) ( ) )

( )
( ) ( )

( ).
2

2 0
2

2
0

2
0

0
2

0
2

0

0
1 zz

xxzz
xx

xxzzi
xxiI −δπ=

−+−

−
π=

−+−

−−
π−=  

The proof of 02 →I  with 0xx →  is similar to above considered case of 
stratified medium finite layer. Indeed the integral 2I  with small t reduces to 
the expression 

( )
( ) (( ) ( ) )

.
1 2

0
22

0
2

0
2

2
2 ∫

∞

∞−
κ

−κ−−+κ

−κ
−≈ d

xxzz
xxtNI  

By closing the contour on top and defining residue at the point ,ik =  
which is the second-order pole and at the first approximation we obtain 

.02 ≈I  It is possible to show, that the second and other higher approximation 

of the summand 2I  are also equal to zero, but we do not cite the proof because of 
its awkwardness. 
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Discussion 

Thus for purpose of the numerical solution of the mathematic modeling of 
internal gravity waves generation by the region of partially mixed stratified 
medium if is possible to quote absorbing nonlocal boundary conditions in 
form of (9), (13), which take account of two essential from physical standpoint 
circumstances: the first– at large distances of perturbation sources linear theory 
is correct; the second– out of mixing zone there are no other perturbation 
sources. Therefore use of these boundary conditions makes it possible to 
describe diverging linear internal gravity waves excited by the region of 
mixed stratified medium. Using obtained results it is possible to obtain the 
answer to the question of principle of how to define later dynamics of internal 
gravity waves nonharmonic trains far from these perturbation sources in 
respect of some set (numerically, experimentally defined) stratified medium 
parameters distribution, assuming adequacy of wave dynamics linear model 
use at large distances. 

 

Figure 1. Nonlocal boundary conditions for mathematic modeling of stratified 
medium wave dynamics far from perturbation sources. Spatial region Q-
numerical solution of complete nonlinear problem, linear-0xx >  theory 

applicability limit, the plane boundary-0xx =  conditions laying-down for 
correct solution of wave dynamics problem. 
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